$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

스트레스 내성 식물 호르몬인 앱시스산의 산업적 활용 전망
Future Prospects for Industrial Application of Abscisic acid, a Stress-resistant Phytohormone 원문보기

Korean chemical engineering research = 화학공학, v.58 no.4, 2020년, pp.514 - 523  

이정호 (상명대학교 생명공학과) ,  김승희 (상명대학교 생명공학과) ,  유하영 (상명대학교 생명공학과)

초록
AI-Helper 아이콘AI-Helper

이동성이 없는 식물은 주위 환경에서 다양한 형태의 스트레스를 받게 되는데 이를 대응하기 위한 방어 기작으로 스트레스 저항성 단백질과 조절 단백질이 생성된다. 앱시스산은 이러한 신호전달 역할을 하는 호르몬 분자로 잘 알려져 있으며, 잎의 노화, 종자의 휴면 등 식물의 생리적 반응에도 관여한다. 특히 식물이 아닌 동물, 조류(algae) 등 다른 생물계에서도 다양한 기능을 수행하는 것으로 밝혀졌다. 본 총설에서는 앱시스산의 생합성 및 신호전달 과정 그리고 그 기능에 대하여 조사하였고, 농생명공학, 의생명공학, 산업생명공학을 포함한 다양한 생명공학분야에서 앱시스산을 활용한 작물량 증대, 질병 치료제 개발, 바이오에너지 생산 등 최신 응용 연구 및 산업적 활용에 대한 동향을 살펴보았다.

Abstract AI-Helper 아이콘AI-Helper

Plants are exposed to various types of stresses in their surroundings, and stress-resistant and regulatory proteins are produced as defense mechanisms. Abscisic acid is well known for its important role in stress signals as a phytohormone and is also involved in the physiological reactions of plants...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 한편 바이오연료(biofuel) 공급원으로서 크게 주목받고 있는 미세조류의 배양에 앱시스산을 첨가한 경우 바이오디젤 생산에 적합한 지질의 함량이 증가 되었는데, 이는 산업생명공학 분야에서 앞으로의 응용 가능성을 기대할 수 있다. 본 총설에서는 앱시스산의 생합성 및 신호전달 과정을 소개하고 앱시스산의 주요 기능들을 바탕으로 각 생명공학 분야에서의 앱시스산 활용 전망을 제시하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
비생물적 스트레스에 대응하는 호르몬 분자로 잘 알려진 앱시스산은 어디서 처음 발견되었는가? 그 중 비생물적 스트레스에 대응하는 호르몬 분자로서 앱시스산이 잘 알려져 있다. 앱시스산은 1960년대에 목화 추출물에서 처음 발견되었으며, 잎 또는 꽃 등의 기관이 기부에서 떨어지는 탈리현상(abscission)을 가속하는 물질 중 두 번째로 분리되었기 때문에 ‘Abscisin II’라고 명명되었다[3]. 비슷한 시기에 자작나무의 일종인 베툴라푸베센스(betula pubescens)로부터 생장 억제 및 휴면(dormancy)을 유도하는 물질인 ‘dormin’이 발견되었으며[4], 이후 Cornforth 외(1966)에 의해 Abscisin II와 dormin이 같은 물질이라는 사실이 밝혀졌다[5].
이동성이 없는 식물이 받는 스트레스를 구분하라. 이동성이 없는 식물은 다양한 요인으로부터 스트레스를 받고 있으며, 그 요인들은 Fig. 1과 같이 크게 생물적 스트레스(biotic stresses)와 비생물적 스트레스(abiotic stresses)로 구분된다. 생물적 스트레스는 세균, 곰팡이, 기생충 등 다른 생물체에 의해 발생하는 스트레스이며, 비생물적 스트레스는 생물이 아닌 환경적인 요인에 의한 것이므로 환경 스트레스라고도 한다.
식물이 스트레스에 노출될 경우, 어떤 물질이 생성되는가? 식물이 스트레스에 노출될 경우 이를 저항하기 위해 스트레스 저항성 단백질(stress tolerance protein) 또는 조절 단백질(regulatory protein)이 생성되며, 이 과정에서 앱시스산(abscisic acid, ABA), 자스몬산(jasmonic acid), 살리실산(salicylic acid) 등과 같은 호르몬 분자들이 신호전달 역할을 한다. 그 중 비생물적 스트레스에 대응하는 호르몬 분자로서 앱시스산이 잘 알려져 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (84)

  1. Dangi, A. K., Sharma, B., Khangwal, I. and Shukla, P., "Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach," Mol. Biotechnol., 60(8), 636-650(2018). 

  2. Atkinson, N. J. and Urwin, P. E., "The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field," J. Exp. Bot., 63(10), 3523-3543(2012). 

  3. Addicott, F. T., Lyon J. L., Ohkuma, K., Thiessen, W. E., Carns, H. R., Smith, O. E., Cornforth, J. W., Milborrow, B. V., Ryback, G. and Wareing, P. F., "Abscisic Acid: A New Name for Abscisin II (Dormin)," Science, 159(3822), 1493(1968). 

  4. Strausz, S. D., "A Study of the Physiology of Dormancy in the Genus Pyrus," Ph.D. Dissertation, Oregon State University, Corvallis, Oregon(1970). 

  5. Cornforth, J. W., Milborrow, B. V., Ryback, G., Rothwell, K. and Wain, R. L., "Identification of the Yellow Lupin Growth Inhibitor as (+)-Abscisin II ((+)-Dormin)," Nature, 211(5050), 742-743(1966). 

  6. Zhang, X. L., Jiang, L., Xin, Q., Liu, Y., Tan, J. X. and Chen, Z. Z., "Structural Basis and Functions of Abscisic Acid Receptors PYLs," Front. Plant Sci., 6, 88(2015). 

  7. Sah, S. K., Reddy, K. R. and Li, J., "Abscisic Acid and Abiotic Stress Tolerance in Crop Plants," Front. Plant Sci., 7, 571(2016). 

  8. Lawas, L. M. F., Zuther, E., Jagadish, S. K. and Hincha, D. K., "Molecular Mechanisms of Combined Heat and Drought Stress Resilience in Cereals," Curr. Opin. Plant Biol., 45(Part B), 212-217(2018). 

  9. Pareek, A., Dhankher, O. P. and Foyer, C. H., "Mitigating the Impact of Climate Change on Plant Productivity and Ecosystem Sustainability," J. Exp. Bot., 71(2), 451-456(2020). 

  10. Ray, S., Mondal, W. A. and Choudhuri, M. A., "Regulation of Leaf Senescence, Grain-filling and Yield of Rice by Kinetin and Abscisic Acid," Physiol. Plant., 59(3), 343-346(1983). 

  11. Kang, J., Yim, S., Choi, H., Kim, A., Lee, K. P., Lopez-Molina, L., Martinoia, E. and Lee, Y., "Abscisic Acid Transporters Cooperate to Control Seed Germination," Nat. Commun., 6(1), 8113(2015). 

  12. Kobayashi, Y. and Tanaka, K., "Extraction and Measurement of Abscisic Acid in a Unicellular Red Alga Cyanidioschyzon merolae," Bio Protoc. 6(23): e2033(2016). 

  13. Balino, P., Gomez-Cadenas, A., Lopez-Malo, D., Romero, F. J. and Muriach, M., "Is There A Role for Abscisic Acid, A Proven Anti-Inflammatory Agent, in the Treatment of Ischemic Retinopathies?," Antioxidants, 8(4), 104(2019). 

  14. Finkelstein, R., "Abscisic Acid Synthesis and Response," Arabidopsis Book, 11, e0166(2013). 

  15. Xiong, L. and Zhu, J. K., "Regulation of Abscisic Acid Biosynthesis," Plant Physiol., 133(1), 29-36(2003). 

  16. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R. G., Pandey, M. and Sharma, S., "Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects," Front. Plant Sci., 8, 161(2017). 

  17. Saroj, K. S., Kambham, R. R. and Jiaxu, L., "Abscisic Acid and Abiotic Stress Tolerance in Crop Plants," Front. Plant Sci., 7, 571(2016). 

  18. Wu, F. Q., Xin, Q., Cao, Z., Liu, Z. Q., Du, S. Y., Mei, C., Zhao, C. X., Wang, X. F., Shang, Y., Jiang, T., Zhang, X. F., Yan, L., Zhao, R., Cui, Z. N., Liu, R., Sun, H. L., Yang, X. L., Su, Z. and Zhang, D. P., "The Magnesium-Chelatase H Subunit Binds Abscisic Acid and Functions in Abscisic Acid Signaling: New Evidence in Arabidopsis," Plant Physiol., 150(4), 1940-1954(2009). 

  19. Muller, A. H. and Hansson, M., "The Barley Magnesium Chelatase 150-kD Subunit Is Not an Abscisic Acid Receptor," Plant Physiol., 150(1), 157-166(2009). 

  20. Tsuzuki, T., Takahashi, K., Inoue, S., Okigaki, Y., Tomiyama, M., Hossain, M. A., Shimazaki, K., Murata, Y. and Kinoshita, T., "Mg-chelatase H Subunit Affects ABA Signaling in Stomatal Guard Cells, but Is Not an ABA Receptor in Arabidopsis thaliana," J. Plant Res., 124(4), 527-538(2011). 

  21. Wang, X. F. and Zhang, D. P., "Abscisic Acid Receptors: Multiple Signal-perception Sites," Ann. Bot., 101(3), 311-317(2008). 

  22. Pandey, S., Nelson, D. C. and Assmann, S. M., "Two Novel GPCRType G Proteins Are Abscisic Acid Receptors in Arabidopsis," Cell, 136(18), 136-148(2009). 

  23. Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J. K., Schroeder, J. I., Volkman, B. F. and Cutler, S. R., "Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins," Science, 324(5930), 1068-1071(2009). 

  24. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E., "Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors," Science, 324(5930), 1064-1068(2009). 

  25. Lim, C. W., Baek, W., Han, S. W. and Lee, S. C., "Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses," Plant Pathol. J., 29(4), 471-476(2013). 

  26. Qiu, J., Hou, Y., Wang, Y., Li, Z., Zhao, J., Tong, X., Lin, H., Wei, X., Ao, H. and Zhang, J., "A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.)," Int. J. Mol. Sci., 18(1), 60(2017). 

  27. Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A. and Grill, E., "Combinatorial Interaction Network of Abscisic Acid Receptors and Coreceptors from Arabidopsis thaliana," Proc. Natl. Acad. Sci. USA, 114(38), 10280-10285 (2017). 

  28. Khan, Z. H., Kumar, B., Dhatterwal, P., Mehrotra, S. and Mehrotra, R., "Transcriptional Regulatory Network of Cis-Regulatory Elements (Cres) and Transcription Factors (Tfs) In Plants During Abiotic stress," Int. J. Plant Biol. Res., 5(2), 1064-1081(2017). 

  29. Nakashima, K. and Suenaga, K., "Toward the Genetic Improvement of Drought Tolerance in Crops," Jpn. Agric. Res. Q., 51(1), 1-10(2017). 

  30. Pei, Z. M., Ghassemian, M., Kwak, C. M., McCourt, P. and Schroeder, J. I., "Role of Farnesyltransferase in ABA Regulation of Guard Cell Anion Channels and Plant Water Loss," Science, 282(5387), 287-290(1998). 

  31. Zeevaart, J. A. D. and Creelman, R. A., "Metabolism and Physiology of Abscisic Acid," Annu. Rev. Plant Physiol., 39(1), 439-473(1988). 

  32. Osakabe, Y., Osakabe, K., Shinozaki, K. and Tran, L. P., "Response of Plants to Water Stress," Front. Plant Sci., 5, 86(2014). 

  33. Darwin, F., "Observations on Stomata," Philos. Trans. Royal Soc., London, 190, 531-621(1898). 

  34. Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A., Sonnewald, S., Sonnewald, U., Kneitz, S., Lachmann, N., Mendel, R. R., Bittner, F., Hetherington, A. M. and Hedrich, R., "The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-autonomous ABA Synthesis," Curr. Biol., 23(1), 53-57(2013). 

  35. Mori, I. C. and Schroeder, J. I., "Reactive Oxygen Species Activation of Plant $Ca^{2+}$ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction," Plant Physiol., 135(2), 702-708(2004). 

  36. Joshi-Saha, A., Valon, C. and Leung, J., "A Brand New START: Abscisic Acid Perception and Transduction in the Guard Cell," Sci. Signal, 4(201), re4(2011). 

  37. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B. and Schroeder, J. I., "Mechanisms of Abscisic Acid-mediated Control of Stomatal Aperture," Curr. Opin. Plant Biol., 28, 154-162(2015). 

  38. Lisar, S. Y., Motafakkerazad, R., Hossain, M. M. and Rahman, I. M. M., in I. M. M. Rahman(Ed.), Water Stress, InTech, Croatia (2012). 

  39. Van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flugge, U. I. and Kunze, R., "Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways During Developmental and Induced Leaf Senescence," Plant Physiol., 141(2), 776-792(2006). 

  40. Himelblau, E. and Amasino, R. M., "Nutrients Mobilized from Leaves of Arabidopsis thaliana During Leaf Senescence," J. Plant Physiol., 158(10), 1317-1323(2001). 

  41. Asad, M. A. U., Zakari, S. A., Zhao, Q., Zhou, L., Ye, Y. and Cheng, F., "Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants," Int. J. Mol. Sci., 20(2), 256 (2019). 

  42. Riov, J., Dagan, E., Goren, R. and Yang, S. F., "Characterization of Abscisic Acid-induced Ethylene Production in Citrus Leaf and Tomato Fruit Tissues," Plant Physiol., 92(1), 48-53(1990). 

  43. Zhao, Y., Chan, Z., Gao, J., Xing, L., Cao, M., Yu, C., Hu, Y., You, J., Shi, H., Zhu, Y., Gong, Y., Mu, Z., Wang, H., Deng, X., Wang, P., Bressan, R. A. and Zhu, J. K., "ABA Receptor PYL9 Promotes Drought Resistance and Leaf Senescence," Proc. Natl. Acad. Sci. USA, 113(7), 1949-54(2016). 

  44. Zhao, Y., Gao, J., Kim, G. I., Chen, K., Bressan, R. A. and Zhu, J. K., "Control of Plant Water Use by ABA Induction of Senescence and Dormancy: An Overlooked Lesson from Evolution," Plant Cell Physiol., 58(8), 1319-1327(2017). 

  45. Huo, H., Dahal, P., Kunusoth, K., McCallum, C. M. and Bradford, K. J., "Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance," Plant Cell, 25(3), 884-900(2013). 

  46. Martinez-Andujar, C., Ordiz, M. I., Huang, Z., Nonogaki, M., Beachy, R. N. and Nonogaki, H., "Induction of 9-cis-epoxycarotenoid Dioxygenase in Arabidopsis thaliana Seeds Enhances Seed Dormancy," Proc. Natl. Acad. Sci. USA, 108(41), 17225-17229(2011). 

  47. Vishal, B. and Kumar, P. P., "Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid," Front. Plant Sci., 9, 838(2018). 

  48. Cowan, A. K. and Rose, P. D., "Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina: Possible Interrelationship with ${\beta}$ -Carotene Accumulation," Plant Physiol., 97(2), 798-803(1991). 

  49. Lee, K. W., Hong, S., Rahman, M. A., Ji, H. C., Cha, J. Y., Jones, C. S., Son, D. and Lee, S. H. "Ectopic Overexpression of Teff Grass (Eragrostis tef) Phi-class Glutathione S-transferase 1 (EtGSTF1) Enhances Prokaryotic Cell Survivability against Diverse Abiotic Stresses," Biotechnol. Bioprocess Eng., 24(3), 552-559(2019). 

  50. Brito, C., Dinis, L. T., Ferreira, H., Moutinho-Pereira, J. and Correia, C. M., "Foliar Pre-Treatment with Abscisic Acid Enhances Olive Tree Drought Adaptability," Plants, 9(3), 341(2020). 

  51. He, J., Jin, Y., Palta, J. A., Liu, H.-Y., Chen, Z. and Li, F.-M., "Exogenous ABA Induces Osmotic Adjustment, Improves Leaf Water Relations and Water Use Efficiency, But Not Yield in Soybean under Water Stress," Agronomy, 9(7), 395(2019). 

  52. Takeuchi, J., Okamoto, M., Mega, R., Kanno, Y., Ohnishi, T., Seo, M. and Todoroki, Y., "Abscinazole-E3M, a Practical Inhibitor of Abscisic Acid 8′-hydroxylase for Improving Drought Tolerance," Sci. Rep., 6(1), 37060(2016). 

  53. Okazaki, M., Nimitkeatkai, H., Muramatsu, T., Aoyama, H., Ueno, K., Mizutani, M., Hirai, N., Kondo, S., Ohnishi, T. and Todoroki, Y., "Abscinazole-E1, a Novel Chemical Tool for Exploring the Role of ABA 8'-hydroxylase CYP707A," Bioorg. Med. Chem., 19(1), 406-413(2011). 

  54. Okazaki, M., Kittikorn, M., Ueno, K., Mizutani, M., Hirai, N., Kondo, S., Ohnishi, T. and Todoroki, Y., "Abscinazole-E2B, a Practical and Selective Inhibitor of ABA 8'-hydroxylase CYP707A," Bioorg. Med. Chem., 20(10), 3162-3172(2012). 

  55. Han, S., Min, M. K., Lee, S. Y., Lim, C. W., Bhatnagar, N., Lee, Y., Shin, D., Chung, K. Y., Lee, S. C., Kim, B. G. and Lee, S., "Modulation of ABA Signaling by Altering VxG $\Phi$ L Motif of PP2Cs in Oryza sativa," Mol. Plant, 10(9), 1190-1205(2017). 

  56. Richardson, W. C., Badrakh, T., Roundy, B. A., Aanderud, Z. T., Petersen, S. L., Allen, P. S., Whitaker, D. R. and Madsen, M. D., "Influence of an Abscisic Acid (ABA) Seed Coating on Seed Germination Rate and Timing of Bluebunch Wheatgrass," Ecol. Evol, 9, 7438-7447(2019). 

  57. Badrakh, T., "Effects of Abscisic Acid (ABA) on Germination Rate of Three Rangeland Species,"MSc Dissertation, Brigham Young University, Provo, Utah(2016). 

  58. Lievens, L., Pollier, J., Goossens, A., Beyaert, R. and Staal, J., "Abscisic Acid as Pathogen Effector and Immune Regulator," Front. Plant Sci., 8, 587(2017). 

  59. Guri, A. J., Evans, N. P., Hontecillas, R. and Bassaganya-Riera, J., "T Cell PPAR ${\gamma}$ Is Required for the Anti-inflammatory Efficacy of Abscisic Acid Against Experimental IBD," J. Nutr. Biochem, 22(9), 812-819(2011). 

  60. Li, H. H., Hao, R. L., Wu, S. S., Guo, P. C., Chen, C. J., Pan, L. P. and Ni, H., "Occurrence, Function and Potential Medicinal Applications of the Phytohormone Abscisic Acid in Animals and Humans," Biochem. Pharmacol, 82(7), 701-712(2011). 

  61. Zocchi, E., Hontecillas, R., Leber, A., Einerhand, A., Carbo, A., Bruzzone, S., Tubau-Juni, N., Philipson, N., Zoccoli-Rodriguez, V., Sturla, L. and Bassaganya-Riera, J., "Abscisic Acid: A Novel Nutraceutical for Glycemic Control," Front. Nutr., 4, 24(2017). 

  62. Bruzzone, S., Moreschi, I., Usai, C., Guida, L., Damonte, G., Salis, A., Scarfi, S., Millo, E., De Flora, A. and Zocchi, E., "Abscisic Acid Is an Endogenous Cytokine in Human Granulocytes with Cyclic ADP-ribose as Second Messenger," Proc. Natl. Acad. Sci. USA, 104(14), 5759-5764(2007). 

  63. Lehmann, J. M,, Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M. and Kliewer, S. A., "An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor Gamma (PPAR gamma)," J. Biol. Chem., 270(22), 12953-12956(1995). 

  64. Guri, A. J., Hontecillas, R., Si, H., Liu, D. and Bassaganya-Riera, J., "Dietary Abscisic Acid Ameliorates Glucose Tolerance and Obesity-related Inflammation in db/db Mice Fed High-fat Diets," Clin. Nutr., 26(1), 107-116(2007). 

  65. Magnone, M., Emionite, L., Guida, L., Vigliarolo, T., Sturla, L., Spinelli, S., Buschiazzo, A., Marini, C., Sambuceti, G., De Flora, A., Orengo, AM., Cossu, V., Ferrando, S., Barbieri, O. and Zocchi, E., "Insulin-independent Stimulation of Skeletal Muscle Glucose Uptake by Low-dose Abscisic Acid via AMpK Activation," Sci. Rep., 10(1), 1454(2020). 

  66. Weller, J. and Budson, A., "Current Understanding of Alzheimer's Disease Diagnosis and Treatment," F1000Res., 7, 1161(2018). 

  67. Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M. and Lamb, B. T., "Inflammation as a Central Mechanism in Alzheimer's Disease," Alzheimers Dement (NY), 4, 575-590(2018). 

  68. Biundo, F., Del Prete, D., Zhang, H., Arancio, O. and D'Adamio, L., "A Role for Tau in Learning, Memory and Synaptic Plasticity," Sci. Rep., 8(1), 3184(2018). 

  69. Govindarajulu, M., Pinky, P. D., Bloemer, J., Ghanei, N., Suppiramaniam, V. and Amin, R., "Signaling Mechanisms of Selective $PPAR{\gamma}$ Modulators in Alzheimer's Disease," PPAR Res., 2018, 2010675(2018). 

  70. Prakash, A. and Kumar, A., "Role of Nuclear Receptor on Regulation of BDNF and Neuroinflammation in Hippocampus of ${\beta}$ -amyloid Animal Model of Alzheimer's Disease," Neurotox. Res., 25(4), 335-347(2014). 

  71. Liu, J., Gu, X., Zou, R., Nan, W., Yang, S., Wang, H. L. and Chen, X. T., "Phytohormone Abscisic Acid Improves Spatial Memory and Synaptogenesis Involving NDR1/2 Kinase in Rats," Front. Pharmacol., 9, 1141(2018). 

  72. Lee, K., Lee, Y. J., Chang, H. N. and Jeong, K. J., "Engineering Trichosporon oleaginosus for Enhanced Production of Lipid from Volatile Fatty Acids as Carbon Source," Korean J. Chem. Eng., 36(6), 903-908(2019). 

  73. Joshi, R., Singla-Pareek, S. L. and Pareek, A., "Engineering Abiotic Stress Response in Plants for Biomass Production," J. Biol. Chem., 293(14), 5035-5043(2018). 

  74. Rahpeyma, S. S. and Raheb, J., "Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels," Bioenergy Res., 12(4), 958-965 (2019). 

  75. Ju, J. H., Oh, B. R., Ryu, S. K., Heo, S. Y., Kim, S. Y., Hong, W. K., Kim, C. H. and Seo, J. W., "Production of Lipid Containing High Levels of Docosahexaenoic Acid by Cultivation of Aurantiochytrium sp. KRS101 using Jerusalem artichoke extract," Biotechnol. Bioprocess Eng., 23(6), 726-732(2018). 

  76. Choi, Y. Y., Hong, M. E., Chang, W. S. and Sim, S. J., "Autotrophic Biodiesel Production from the Thermotolerant Microalga Chlorella sorokiniana by Enhancing the Carbon Availability with Temperature Adjustment," Biotechnol. Bioprocess Eng., 24(1), 223-231(2019). 

  77. Lee, J. H., Lee, H. U., Lee, J. H., Lee, S. K., Yoo, H. Y., Park, C. and Kim, S. W., "Continuous Production of Bioethanol Using Microalgal Sugars Extracted from Nannochloropsis gaditana," Korean J. Chem. Eng., 36(1), 71-76(2019). 

  78. Muthuraj, M., Selvaraj, B., Palabhanvi, B., Kumar, V. and Das, D., "Enhanced Lipid Content in Chlorella sp. FC2 IITG via High Energy Irradiation Mutagenesis," Korean J. Chem. Eng., 36(1), 63-70(2019). 

  79. Contreras-Pool, P. Y., Peraza-Echeverria1, S., Ku-Gonzalez, A. F. and Herrera-Valencia, V. A., "The Phytohormone Abscisic Acid Increases Triacylglycerol Content in the Green Microalga Chlorella saccharophila (Chlorophyta)," ALGAE, 31(3), 267-276(2016). 

  80. Sulochana, S. B. and Arumugam, M., "Influence of Abscisic Acid on Growth, Biomass and Lipid Yield of Scenedesmus quadricauda Under Nitrogen Starved Condition," Bioresour. Technol., 213, 198-203(2016). 

  81. Sulochana, S. B. and Arumugam, M., "Influence of Abscisic Acid on Growth, Biomass and Lipid Yield of Scenedesmus quadricauda under Nitrogen Starved Condition," Bioresour. Technol., 213, 198-203(2016). 

  82. Lu, Y., Tarkowska, D., Tureckova, V., Luo, T., Xin, Y., Li, J., Wang, Q., Jiao, N., Strnad, M. and Xu, J., "Antagonistic Roles of Abscisic Acid and Cytokinin During Response to Nitrogen Depletion in Oleaginous Microalga Nannochloropsis oceanica Expand the Evolutionary Breadth of Phytohormone Function," Plant J., 80(1), 52-68(2014). 

  83. Lin, B., Ahmed, F., Du, H., Li, Z., Yan, Y., Huang, Y., Cui, M., Yin, Y., Li, B., Wang, M., Meng, C. and Gao, Z., "Plant Growth Regulators Promote Lipid and Carotenoid Accumulation in Chlorella vulgaris," J. Appl. Phycol., 30, 1549-1561(2017). 

  84. Sivaramakrishnan, R. and Incharoensakdi, A., "Plant Hormone Induced Enrichment of Chlorella sp. Omega-3 Fatty Acids," Biotechnol. Biofuels, 13(7), 1-14(2020). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로