$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

PTMG, DMBA 적용에 따른 창상피복 폴리우레탄 수지의 물리적 특성 평가
Evaluation of Physical Properties of Polyurethane Resin for Wound Covering according to PTMG, DMBA Application 원문보기

Journal of the Korean Applied Science and Technology = 한국응용과학기술학회지, v.37 no.5, 2020년, pp.1248 - 1256  

이주엽 (중원대학교 융합과학기술대학 소방방재공학전공)

Abstract AI-Helper 아이콘AI-Helper

In this study, the polyurethane resin was synthesized by applying PTMG and DMBA of different composition ratios for the synthesis of water-dispersible polyurethane used in wound coating resin. The varying properties of the synthesized water-dispersible polyurethane were measured through tensile stre...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In addition, in order to impart ionicity to the prepolymer, dimethylolbutanoic acid (DMBA) was applied to impart ionicity to the prepolymer, and the polyurethane resin for water-dispersible wound coating was synthesized through emulsification[12-15]. As for the water-dispersed polyurethane resin, samples were prepared by varying the number of moles of reaction of PTMG, IPDI, and DMBA, and the change in physical properties according to the composition change was analyzed.
  • In this study, polyol and carboxylic acid were used for diisocyanate (IPDI) in the preparation of polyurethane prepolymers for the synthesis of water-dispersible polyurethane wound coatings. As the polyether polyols, polytetramethylene glycol (PTMG) having two or more hydroxyl groups in the molecule and having a molecular weight of 2000 is used[11].
  • , USA) was used to measure tensile strength and elongation properties to check the physical properties change of the synthesized water-dispersed urethane. Taber abrasion tester (TO 880T, Test One, Inc.) was used to measure the wear resistance, and SEM (Scaning electron microscope, Saron Tech, Korea) was used to visually check the condition of the destroyed surface.
  • The prepared resin was prepared as a film to determine the tensile strength and elongation, and the abrasion resistance was measured by spray coating on the leather surface, and the following results were obtained.

대상 데이터

  • Polyether polyols used for polyurethane synthesis for this study were polytetramethylene glycol (PTMG, molecular weight 2000, Junsei chem.Co.) and isophorone diisocyanate (IPDI, Bayer), which is an aliphatic diisocyanate. Dimethylolbutanoic acid (DMBA, GEO) was used to introduce a hydrophilic group using a carboxy group, and acetone (BASF) was used to suppress an increase in viscosity that occurs when imparting ionicity to the prepolymer.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. Z. Ma, H. Ji, D. Tan, "Silver nanoparticles decorated, flexible SiO2 nanofibers with long-term antibacterial effect as reusable wound cover", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.378 Issues 1-3, pp. 57-64, (2011). 

  2. I. Diez-Garcia, M. R. C. Lemma, H.S. Barud, A. Eceiza, "Hydrogels based on waterborne poly(urethane-urea)s by physicallycross-linking with sodium alginate and calcium chloride", Carbohydrate Polymers, Vol.250, Article 116940, (2020). 

  3. C. Viezzera, R. Mazzucad, D. C. Machadod, M. M. C. Fortea, J. L. G. Ribelles, "A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model", Carbohydrate Polymers, Vol.231, Article 115734, (2019). 

  4. M. F. Jonkman, P. Bruin, A. J. Pennings, H. J. Klasen, "Poly(ether urethane) wound covering with high water vapour permeability compared with conventional tulle gras on split-skin donor sites", Burns, Vol.15, Issue. 4, pp.211-216, (1989). 

  5. A. Eskandarinia, A. Kefayat, M. Gharakhloo, H. Salehi, "A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities", International Journal of Biological Macromolecules, Vol.149, pp.467-476, (2020). 

  6. H. Lu, P. Sun, Z. Zheng, F. C. Chang, "Reduction-sensitive rapid degradable poly(urethane-urea)s based on cystine", Polymer Degradation and Stability, Vol.97, Issue.4, pp.661-669, (2012). 

  7. R. D. Elegbede, M. O. Ilomuanya, A. A. Sowemimo, M. Vente, "Effect of fermented and green Aspalathus linearis extract loaded hydrogel on surgical wound healing in Sprague Dawley rats", Wound Medicine, Vol.29, Article.100186, (2020). 

  8. N. Namviriyachote, P. Muangman, K. Chinaroonchai, G. C. Ritthidej, "Polyurethane-biomacromolecule combined foam dressing containing asiaticoside: fabrication, characterization and clinical efficacy for traumatic dermal wound treatment", International Journal of Biological Macromolecules, Vol.143, pp.510-520, (2019). 

  9. S. A. A. Najafabadi, A. Mohammadi, A. Z. Kharazi, "Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing", Materials Science and Engineering: C, Vol.115, Article.110899, (2020). 

  10. D. Khodabakhshi, A. Eskandarinia, A. Kefayat, J. Moshtaghian, "In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy", Colloids and Surfaces B: Biointerfaces, Vol.178 pp.177-184, (2019). 

  11. U. Dorn, S. Enders, "Heat of mixing and liquideliquid-equilibrium of water + polypropylene glycol (PPG) with different molecular weights and water + propylene glycol dimethyl ether", Fluid Phase Equilibria, Vol..424, pp.58-67, (2016). 

  12. S. k. Gaddam, A. Palanisamy, "Anionic waterborne polyurethane-imide dispersions from cottonseed oil based ionic polyol", Industrial Crops and Products, Vol 96, pp 132-139, (2017). 

  13. M. Tielemans, P. Roose, C. Ngo, R. Lazzaroni, P. Leclere, "Multiphase coatings from complex radiation curable polyurethane dispersions", Progress in Organic Coatings, Vol.75, pp.560-568, (2012). 

  14. V. Garcia-Pacios, J. A. Jofre-Reche, V. Costa, M. Colera, J. M. Martin-Martinez, Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights, Progress in Organic Coatings, Vol.76, pp. 484-1493, (2013). 

  15. Y. Li, B. A. J. Noordover, R. A. T. M. van Benthem, C. E. Koning, "Property profile of poly(urethane urea) dispersions containing dimer fatty acid-, sugar- and amino acid-based building blocks", European Polymer Journal, Vol.59, pp.8-18, (2014). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로