$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

물리탐사에 기초한 대수층 특성화 및 적용 사례 분석
Aquifer Characterization Based on Geophysical Methods and Application Analysis on Past Cases 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.27 no.2, 2022년, pp.1 - 23  

정주연 (세종대학교 에너지자원공학과) ,  김빛나래 (세종대학교 에너지자원공학과) ,  송서영 (세종대학교 에너지자원공학과) ,  정인석 (세종대학교 에너지자원공학과) ,  송성호 (한국농어촌공사 농어촌연구원) ,  남명진 (세종대학교 에너지자원공학과)

Abstract AI-Helper 아이콘AI-Helper

For its essential importance as a resource, sustainable development of groundwater has been major research interests for many decades. Conventional characterization of aquifer and groundwater has relied on borehole data from observation well. Although borehole data provide useful information on yiel...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 이 논문에서는 먼저 대수층의 종류별 특성에 대해 알아보고, 대수층에서 파악할 수 있는 물성 및 현상과 이로 인한 물리탐사를 이용한 대수층 특성화 방법, 대수층 특성화 와 현장 적용성과 방법에 대해 기술하였다. 이후 실제 지하수 탐사를 수행한 물리탐사 사례들을 탐사 목적에 따라 분석하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (168)

  1. Abd-Elaty, I., Abd-Elhamid, H.F., and Negm, A.M., 2018, Investigation of Saltwater Intrusion in Coastal Aquifers, Groundw. Nile Delta, 329-353. 

  2. Ahmed, A.S., Revil, A., Boleve, A., Steck, B., Vergniault, C., Courivaud, J.R., Jougnot, D., and Abbas, M., 2020, Determination of the permeability of seepage flow paths in dams from selfpotential measurements, Eng. Geol., 268, 105514. 

  3. Ahmed, S., de Marsily, G., and Talbot, A., 1988, Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity, Groundwater, 26(1), 78-86. 

  4. Ahn, S.S., and Park, D.I., 2015, Groundwater Characterization according to Hydraulic Conductivity Input Method, J. Environ. Sci. Int., 24(7), 939-946. 

  5. Aizebeokhai, A.P. and Oyeyemi, K.D., 2014, The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging, J. Appl. Geophy., 111, 364-376. 

  6. Akhter, G., Ge, Y., Hasan, M., and Shang, Y., 2022, Estimation of Hydrogeological Parameters by Using Pumping, Laboratory Data, Surface Resistivity and Thiessen Technique in Lower Bari Doab (Indus Basin), Pakistan, Appl. Sci., 12(6), 3055. 

  7. Alfarrah, N. and Walraevens, K., 2018, Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions, Water, 10(2), 143. 

  8. Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans., 146(01), 54-62. 

  9. Atekwana, E.A. and Atekwana, E.A., 2010, Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review, Surv. Geophys., 31(2), 247-283. 

  10. Bai, L., Huo, Z., Zeng, Z., Liu, H., Tan, J., and Wang, T., 2021, Groundwater flow monitoring using time-lapse electrical resistivity and Self Potential data, J. Appl. Geophy., 193, 104411. 

  11. Barlow, P.M. and Reichard, E.G., 2010, Saltwater intrusion in coastal regions of North America, Hydrogeol. J., 18(1), 247-260. 

  12. Batte, A.G., Barifaijo, E., Kiberu, J.M., Kawule, W., Muwanga, A., Owor, M., and Kisekulo, J., 2010, Correlation of geoelectric data with aquifer parameters to delineate the groundwater potential of hard rock terrain in Central Uganda, Pure. Appl. Geophys., 167(12), 1549-1559. 

  13. Batu, V., 1998, Aquifer Hydraulics: A Comprehensive Guide To Hydrogeologic Data Analysis, John Wiley & Sons, New York. 

  14. Bear, J., Cheng, A.H.D., Sorek, S., Ouazar, D., and Herrera, I. (Eds.)., 1999, Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, Kluwer Academic Publisher, Dordrecht, Boston, London. 

  15. Bhatt, K., 1993, Uncertainty in wellhead protection area delineation due to uncertainty in aquifer parameter values, J. Hydrol., 149(1-4), 1-8. 

  16. bin Azhar, A.S., Latiff, A.H. A., Lim, L.H., and Godeke, S.H., 2019, Groundwater investigation of a coastal aquifer in Brunei Darussalam using seismic refraction, Environ. Earth. Sci., 78(220). 

  17. Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., and Slater, L.D., 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water. Resour. Res., 51(6), 3837-3866. 

  18. Binley, A., Keery, J., Slater, L., Barrash, W., and Cardiff, M., 2016, The hydrogeologic information in cross-borehole complex conductivity data from an unconsolidated conglomeratic sedimentary aquifer, Geophy., 81(6), E409-E421. 

  19. Bocanegra, E., Da Silva, G.C., Custodio, E., Manzano, M., and Montenegro, S., 2010, State of knowledge of coastal aquifer management in South America, Hydrogeol. J., 18(1), 261-267. 

  20. Bodin, J., Porel, G., Nauleau, B., and Paquet, D., 2021, Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data, Hydrol. Earth Syst. Sci. Discuss., 1-22. 

  21. Borner, F.D., Schopper, J.R., and Weller, A., 1996, Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements1, Geophys. Prospect., 44(4), 583-601. 

  22. Briggs, M.A., Lautz, L.K., and McKenzie, J.M., 2012, A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams, Hydrol. Process., 26(9), 1277-1290. 

  23. Buddemeier, R.W., Sawin, R.S., Whittemore, D.O., and Young, D.P., 1995, Salt Contamination of Ground Water in South Central Kansas. Kansas Geological Survey, Public Information Circular# 2. 

  24. Busato, L., Boaga, J., Perri, M.T., Majone, B., Bellin, A., and Cassiani, G., 2019, Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study, Sci. Total. Environ., 648, 1105-1120. 

  25. Buselli, G., Davis, G.B., Barber, C., Height, M.I., and Howard, S.H.D., 1992, The application of electromagnetic and electrical methods to groundwater problems in urban environments, Explor. Geophys., 23(4), 543-555. 

  26. Cardarelli, E., and Di Filippo, G., 2009, Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan-Italy), Waste. Manag. Res., 27(6), 595-602. 

  27. Castelluccio, M., Agrahari, S., De Simone, G., Pompilj, F., Lucchetti, C., Sengupta, D., Galli, G., Friello, P., Curatolo, P., Giorgi, R., and Tuccimei, P., 2018, Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India, Environ. Sci. Pollut. Res., 25(13), 12515-12527. 

  28. Chae, B.G., Lee, D.H, Kim, Hwang, S.H., Kee, W.Y., and Lee, S.G., 2001, Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings, J. Korea Geoenvironmental Soc., 2(1), 37-56. 

  29. Chae, G.T., Kim, K., Yun, S.T., Kim, K.H., Kim, S.O., Choi, B.Y., Kim, H.S., and Rhee, C.W., 2004, Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility, Chemosphere, 55(3), 369-378. 

  30. Chakma, A., Bhowmik, T., Mallik, S., and Mishra, U., 2022, Application of GIS and Geostatistical Interpolation Method for Groundwater Mapping. In Advanced Modelling and Innovations in Water Resources Engineering, Springer, Singapore. 

  31. Chambers, J., Meldrum, P., Gunn, D., Wilkinson, P., Merritt, A., Murphy, W., West, J., Kuras, O., Haslam, E., Hobbs, P., Pennington, C., and Munro, C., 2013, Geophysical-geotechnical sensor networks for landslide monitoring. In Landslide Science and Practice, Springer, Berlin, Heidelberg, 289-294. 

  32. Chandra, P.C., 2015, Groundwater geophysics in hard rock, CRC Press, Taylor & Francis Group, Leiden, The Netherlands. 

  33. Cho, D.H. and Jee, S.K., 2000, A Pole-pole Electrical Survey for Groundwater, Geophys. and Geophys. Explor., 3(3), 88-93. 

  34. Choi, S.H., Kim, H.S., and Kim, J.S., 2008, IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer, J. Eng. Geol., 18(4), 423-431. 

  35. Chung, I.-M., Kim, N.W. and Lee, J., 2007, Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed, J. Soil Groundw. Environ., 12(5), p.19-32. 

  36. Chung, I.M., Kim, J., Lee, J., and Chang, S.W., 2015, Status of exploitable groundwater estimations in Korea, J. Eng. Geol., 25(3), 403-412. 

  37. Cole, K.S. and Cole, R.H., 1942, Dispersion and absorption in dielectrics II. Direct current characteristics, J. Chem. Phys., 10(2), 98-105. 

  38. Comte, J.-C., and Banton, O., 2007, Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402. 

  39. Cueto, M., Olona, J., Fernandez-Viejo, G., Pando, L., and Lopez-Fernandez, C., 2018, Karst-induced sinkhole detection using an integrated geophysical survey: a case study along the Riyadh Metro Line 3 (Saudi Arabia), Near Surf. Geophys., 16(3), 270-281. 

  40. Custodio, E., 2010, Coastal aquifers of Europe: an overview, Hydrogeol. J., 18(1), 269-280. 

  41. Dai, Z., Keating, E., Gable, C., Levitt, D., Heikoop, J., and Simmons, A., 2010, Stepwise inversion of a groundwater flow model with multi-scale observation data, Hydrogeol J, 18(3), 607-624. 

  42. Niwas, S., Tezkan, B., and Israil, M., 2011, Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany, Hydrogeol. J. 19(2), 307-315. 

  43. Daily, W., Ramirez, A., Binley, A., and LeBrecque, D., 2004, Electrical resistance tomography, Leading Edge, 23(5), 438-442. 

  44. Davis, J.L. and ANNAN, A.P., 1989, Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1, Geophys. Prospect., 37(5), 531-551. 

  45. Dawoud, M.A. and Raouf, A.R.A., 2009, Groundwater exploration and assessment in rural communities of Yobe State, Northern Nigeria, Water Resour. Manag., 23(3), 581-601. 

  46. de Menezes Travassos, J. and Menezes, P.D.T.L., 2004, GPR exploration for groundwater in a crystalline rock terrain, J. Appl. Geophy., 55(3-4), 239-248. 

  47. Deiana, R., Cassiani, G., Kemna, A., Villa, A., Bruno, V., and Bagliani, A., 2007, An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring, Near Surf. Geophys., 5(3), 183-194. 

  48. Deline, B., Harris, R., and Tefend, K., 2015, Laboratory Manual for Introductory Geology, University System of Georgia, University Press of North Georgia. 

  49. Dickson, N.E.M., Comte, J.C., McKinley, J., and Ofterdinger, U., 2014, Coupling ground and airborne geophysical data with upscaling techniques for regional groundwater modeling of heterogeneous aquifers: Case study of a sedimentary aquifer intruded by volcanic dykes in Northern Ireland, Water. Resour. Res., 50(10), 7984-8001. 

  50. Doetsch, J., Ingeman-Nielsen, T., Christiansen, A. V., Fiandaca, G., Auken, E., and Elberling, B., 2015, Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution, Cold Reg. Sci. Technol., 119, 16-28. 

  51. Draskovits, P., Hobot, J., Vero, L., and Smith, B., 1990, Induced polarization surveys applied to evaluation of groundwater resources, Pannonian Basin, Hungary. USA. Invest. Geophy., 4, 379-396. 

  52. El-Kaliouby, H., and Abdalla, O., 2015. Application of time-domain electromagnetic method in mapping saltwater intrusion of a coastal alluvial aquifer, North Oman. J. Appl. Geophy., 115, 59-64. 

  53. Etete, B.I., Noiki, F.R., and Aizebeokhai, A.P., 2017, Estimation of hydraulic parameters from vertical electrical resistivity sounding, J. Inform. Math. Sci., 9(2), 285-296. 

  54. Fagerlund, F. and Heinson, G., 2003, Detecting subsurface groundwater flow in fractured rock using self-potential (SP) methods, Environ. Geol., 43(7), 782-794. 

  55. Fallon, G.N., Fullagar, P.K., and Sheard, S.N., 1997, Application of geophysics in metalliferous mines, Aust. J. Earth Sci., 44(4), 391-409. 

  56. Fitterman, D.V., 2014, Mapping saltwater intrusion in the Biscayne aquifer, Miami-Dade County, Florida using transient electromagnetic sounding, J. Environ. Eng. Geophys., 19(1), 33-43. 

  57. Fitts, C.R., 2002, Groundwater science, Academic Press, San Diego, California. 

  58. Frind, E.O. and Molson, J.W., 2018, Issues and options in the delineation of well capture zones under uncertainty, Ground Water, 56(3), 366-376. 

  59. Fukue, M., Minato, T., Horibe, H., and Taya, N., 1999, The micro-structures of clay given by resistivity measurements, Eng. Geol., 54(1-2), 43-53. 

  60. Gloaguen, E., Chouteau, M., Marcotte, D., and Chapuis, R., 2001, Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data, J. Appl. Geophy., 47(2), 135-152. 

  61. Gokturkler, G., Balkaya, C., Erhan, Z., and Yurdakul, A., 2008, Investigation of a shallow alluvial aquifer using geoelectrical methods: a case from Turkey, Environ. Geol., 54(6), 1283-1290. 

  62. Gonzalez, J.A.M., Comte, J.C., Legchenko, A., Ofterdinger, U., and Healy, D., 2021, Quantification of groundwater storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: Sensitivity and uncertainty associated with petrophysical modelling, J. Hydrol., 593, 125637. 

  63. Gopinath, S., Srinivasamoorthy, K., Saravanan, K., and Prakash, R., 2019, Discriminating groundwater salinization processes in coastal aquifers of southeastern India: geophysical, hydrogeochemical and numerical modeling approach. Environment, Development and Sustainability, 21(5), 2443-2458. 

  64. Graham, M.T., MacAllister, D.J., Vinogradov, J., Jackson, M.D., and Butler, A.P., 2018, Self-potential as a predictor of seawater intrusion in coastal groundwater boreholes, Water. Resour. Res., 54(9), 6055-6071. 

  65. Griffiths, D.H. and Barker, R.D., 1993, Two-dimensional resistivity imaging and modelling in areas of complex geology, J. Appl. Geophy., 29(3-4), 211-226. 

  66. Guevara, H.J.P., Barrientos, J.H., Rodriguez, O.D., Guevara, V.M.P., Cardenas, O.L., and Torres, M.L.D.G., 2017, Estimation of Hydrological Parameters from Geoelectrical Measurements. In Electrical Resistivity and Conductivity, Intech. 

  67. Gunnink, J.L., Pham, H.V., Oude Essink, G.H., and Bierkens, M.F., 2021, The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses, Earth Syst. Sci. Data, 13(7), 3297-3319. 

  68. Hamed, Y., Hadji, R., Redhaounia, B., Zighmi, K., Baali, F., and El Gayar, A., 2018, Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. EuroMediterr, J. Environ. Integr., 3(1), 1-15. 

  69. Hamm, S.Y., Cheong, J.Y., Jang, S., Jung, C.Y., and Kim, B.S., 2005, Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea, J. Hydrol., 310(1-4), 111-121. 

  70. Hasan, M., Shang, Y., Akhter, G., and Jin, W., 2018, Geophysical assessment of groundwater potential: a case study from Mian Channu Area, Pakistan, Groundwater, 56(5), 783-796. 

  71. Hayley, K., Bentley, L.R., and Gharibi, M., 2009, Time-lapse electrical resistivity monitoring of salt-affected soil and groundwater, Water. Resour. Res., 45(7). 

  72. Hubbard, S.S., Chen, J., Peterson, J., Majer, E.L., Williams, K.H., Swift, D.J., Mailloux, B., and Rubin, Y., 2001, Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data, Water. Resour. Res., 37(10), 2431-2456. 

  73. Hubbard, S.S., Rubin, Y., and Majer, E., 1997, Ground-penetrating-radar-assisted saturation and permeability estimation in bimodal systems, Water. Resour. Res., 33(5), 971-990. 

  74. Hyun, Y., 2014, Preliminary Study on Environmental Values of Groundwater Resources in Korea, Korea Environment Institute. 

  75. Jeong, J., Park, E., Han, W.S., Kim, K.Y., Oh, J., Ha, K., Yoon, H., and Yun, S.T., 2017, A method of estimating sequential average unsaturated zone travel times from precipitation and water table level time series data, J. Hydrol., 554, 570-581. 

  76. Jung, K., Lee, T., Choi, B.G., and Hong, S., 2015, Rainwater harvesting system for contiunous water supply to the regions with high seasonal rainfall variations, Water. Resour. Res., 29(3), 961-972. 

  77. Kadri, M. and Nawawi, M.N.M., 2010, Groundwater exploration using 2D resistivity imaging in Pagoh, Johor, Malaysia, In AIP Conference Proceedings, American Institute of Physics. 

  78. Kelly, W.E. and Mares, S. (Eds.), 1993, Applied geophysics in hydrogeological and engineering practice. Elsevier. 

  79. Kim, B., Nam, M.J., Jang, H., Jang, H., Son, J. S., and Kim, H.J., 2017, The Principles and Practice of Induced Polarization Method, Geophys. and Geophys. Explor., 20(2), 100-113. 

  80. Kim, H.S., 1997, Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method, J. Eng. Geol., 7(2), 139-149. 

  81. Kim, J.W., 2013, Characteristics of water level change and hydrogeochemistry of groundwater from national groundwater monitoring network, Korea: geostatistical interpretation and the implications for groundwater management. Ph.D. thesis in Korea University, 173. 

  82. Kim, K.H., Yun, S.T., Kim, H.K., and Kim, J.W., 2015. Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. J. Geochem. Explor., 148, 196-205. 

  83. Kumar, D., Rajesh, K., Mondal, S., Warsi, T., and Rangarajan, R., 2020, Groundwater exploration in limestone-shale-quartzite terrain through 2D electrical resistivity tomography in Tadipatri, Anantapur district, Andhra Pradesh, J. Earth Syst. Sci., 129(1), 1-16. 

  84. Lee, C.S., Kim, H.J., Kong, Y.S., Lee, J.M., and Chang, T.W., 2001, Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey, Geophys. and Geophys. Explor., 4(4), 124-132. 

  85. Lee, J.M., Ko, K.S., and Woo, N.C., 2020, Characterization of Groundwater Level and Water Quality by Classification of Aquifer Types in South Korea, Econ. and Environ. Geol., 53(5), 619-629. 

  86. Lee, J.Y., 2017, Lessons from three groundwater disputes in Korea: Lack of comprehensive and integrated investigation, Int. J. Water, 11(1), 59-72. 

  87. Lee, J.Y. and Kwon, K., 2015, Groundwater resources in Gangwon Province: Tasks and perspectives responding to droughts, J. Geol. Soc. Korea, 51(6), 585-595. 

  88. Lee, J.Y., Yi, M.J., Yoo, Y.K., Ahn, K.H., Kim, G.B., and Won, J.H., 2007, A review of the national groundwater monitoring network in Korea, Hydrol. Process.: An International Journal, 21(7), 907-919. 

  89. Lee, J.M., Park, J.H., Chung, E. and Woo, N.C., 2018, Assessment of Groundwater Drought in the Mangyeong River Basin, Korea, Sustain., 10(3), 831. 

  90. Lee, T.J., Park, N.Y., Choo, S.Y., Lee, J.H., and Koh, S.Y., 2003, Estimation of Two-dimensional Distribution of Coefficient of Permeability from Electrical Logging and AMT Data in Yangsan Area. Geophy. and Geophy. Explor., 6(2), 64-70. 

  91. Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A., 2008, Complex conductivity of water-saturated packs of glass beads. J. Colloid Interf. Sci., 321(1), 103-117. 

  92. Lesmes, D.P., Decker, S.M., and Roy, D.C., 2002, A multiscale radar-stratigraphic analysis of fluvial aquifer heterogeneity, Geophy., 67(5), 1452-1464. 

  93. Levchuk, S., Kashparov, V., Maloshtan, I., Yoschenko, V., and Van Meir, N., 2012, Migration of transuranic elements in groundwater from the near-surface radioactive waste site, Appl. Geochen., 27(7), 1339-1347. 

  94. Liu, H., Xie, X., Cui, J., Takahashi, K., and Sato, M., 2014, Groundwater level monitoring for hydraulic characterization of an unconfined aquifer by common mid-point measurements using GPR, J. Environ. Eng. Geophys., 19(4), 259-268. 

  95. Madun, A., Tajudin, S.A.A., Sahdan, M.Z., Dan, M.F.M., and Talib, M.K.A., 2018, Electrical resistivity and induced polarization techniques for groundwater exploration, Int. J. Integr. Eng., 10(8). 

  96. Massoud, U., Santos, F., Khalil, M.A., Taha, A. and Abbas, A.M., 2010, Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer, central Sinai, Egypt, Hydrogeol. J., 18, 699-710. 

  97. MOE (Ministry of Environment) and K-water, 2019, National Groundwater Monitoring Network in Korea Annual Report 2019, ME and K-water, Daejeon, Korea, 829. 

  98. Min, J.H., Yun, S.T., Kim, K., Kim, H.S., and Kim, D.J., 2003, Geologic controls on the chemical behaviour of nitrate in riverside alluvial aquifers, Korea, Hydrol. Process., 17(6), 1197-1211. 

  99. Ministry of Environment, 2020, Groundwater business performance guideline, file:///C:/Users/juju/Downloads/%ED%99%98%EA%B2%BD%EB%B6%80_%EC%A7%80%ED%95%98%EC%88%98%EC%97%85%EB%AC%B4%EC%88%98%ED%96%89%20%EC%A7%80%EC%B9%A8%20(1).pdf 

  100. Moghareh Abed, T., Eskandari Torbaghan, M., Hojjati, A., Rogers, C.D., and Chapman, D.N., 2020, Experimental investigation into the effects of cast-iron pipe corrosion on GPR detection performance in clay soils, J. Pipeline Syst. Eng. Pract., 11(4), 04020040. 

  101. Mohamaden, M.I. and Ehab, D., 2017, Application of electrical resistivity for groundwater exploration in Wadi Rahaba, Shalateen, Egypt, J. Astron. Geophy., 6(1), 201-209. 

  102. Monego, M., Cassiani, G., Deiana, R., Putti, M., Passadore, G., and Altissimo, L., 2010, A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography, Geophy, 75(4), WA61-WA73. 

  103. Morgan, L.K., and Werner, A.D., 2015, A national inventory of seawater intrusion vulnerability for Australia, J. Hydrol. Reg. Stud., 4, 686-698. 

  104. Nadler, A. and Frenkel, H., 1980, Determination of soil solution electrical conductivity from bulk soil electrical conductivity measurements by the four-electrode method, Soil Sci. Soc. Am. J., 44(6), 1216-1221. 

  105. Nakashima, Y., Zhou, H., and Sato, M., 2001, Estimation of groundwater level by GPR in an area with multiple ambiguous reflections, J. Appl. Geophy., 47(3-4), 241-249. 

  106. Naudet, V., Revil, A., Bottero, J. Y., and Begassat, P., 2003, Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett., 30(21). 

  107. Neal, A., 2004, Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev., 66(3-4), 261-330. 

  108. Niwas, S., Tezkan, B., and Israil, M., 2011, Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany, Hydrogeol. J., 19(2), 307-315. 

  109. Olorunfemi, M.O. and Fasuyi, S.A., 1993, Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State), J. Afr. Earth Sci. (Middle East), 16(3), 309-317. 

  110. Owen R.J., Gwavava O., and Gwaze P., 2005, Multi-electrode resistivity survey for groundwater exploration in the Harare greenstone belt, Zimbabwe, Hydrogeol. J., 14, 244-252. 

  111. Panthulu, T.V., Krishnaiah, C., and Shirke, J.M., 2001, Detection of seepage paths in earth dams using self-potential and electrical resistivity methods, Eng. Geol., 59(3-4), 281-295. 

  112. Park, K.G., Shin, J.H., Hwang, S.H., and Park, I.H, 2007, Fresh water injection test to mitigate seawater intrusion and geophysical monitoring in coastal area, Geophy. and Geophy. Explor., 10(4), 353-360. 

  113. Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R., and Nelson, P.H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophy, 43(3), 588-609. 

  114. Porsani, J.L., Elis, V.R., and Hiodo, F.Y., 2005, Geophysical investigations for the characterization of fractured rock aquifers in Itu, SE Brazil, J. Appl. Geophy., 57(2), 119-128. 

  115. Rai, S.N., Thiagarajan, S., Kumar, D., Dubey, K. M., Rai, P.K., Ramachandran, A., and Nithya, B., 2013, Electrical resistivity tomography for groundwater exploration in a granitic terrain in NGRI campus, Current Science, 105(10), 1410-1418. 

  116. Raiche, A.P., Jupp, D.L.B., Rutter, H., and Vozoff, K., 1985, The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures, Geophysics, 50(10), 1618-1627. 

  117. Revil, A., Karaoulis, M., Johnson, T., and Kemna, A., 2012, Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology, Hydrogeol. J., 20(4), 617-658. 

  118. Revil, A., Naudet, V., Nouzaret, J., and Pessel, M., 2003, Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications, Water. Res our. Res ., 39(5). 

  119. Reynolds, J.M., 2011, An introduction to applied and environmental geophysics, John Wiley & Sons. 

  120. Ritz, M., Descloitres, M., Robineau, B., and Courteaud, M., 1997, Audiomagnetotelluric prospecting for groundwater in the Baril coastal area, Piton de la Fournaise Volcano, Reunion Island, Geophy, 62(3), 758-762. 

  121. Rizzo, E., Suski, B., Revil, A., Straface, S., and Troisi, S., 2004, Self-potential signals associated with pumping tests experiments, J. Geophys. Res. Solid. Earth, 109(B10). 

  122. Romanak, K.D., Smyth, R.C., Yang, C., Hovorka, S.D., Rearick, M., and Lu, J., 2012, Sensitivity of groundwater systems to CO 2 : Application of a site-specific analysis of carbonate monitoring parameters at the SACROC CO 2 -enhanced oil field, Int. J. Greenh. Gas Con., 6, 142-152. 

  123. Saad, R., Nawawi, M.N.M., and Mohamad, E.T., 2012, Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT), J. Geotech. Geoenviron. Eng., 17, 369-376. 

  124. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G., 2005, Electrical resistivity survey in soil science: a review, Soil Tillage Res., 83(2), 173-193. 

  125. Sattar, G.S., Keramat, M., and Shahid, S., 2016, Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh, Appl. Water Sci., 6(1), 35-45. 

  126. Schmugge, T.J., 1980, Effect of texture on microwave emission from soils: IEEE Transactions on Geoscience and Remote Sensing, GE-18(4), 353-361. 

  127. Shainberg, I., Rhoades, J.D., and Prather, R.J., 1980, Effect of exchangeable sodium percentage, cation exchange capacity, and soil solution concentration on soil electrical conductivity, Soil Sci. Soc. Am. J., 44(3), 469-473. 

  128. Sharma, S.P., and Baranwal, V.C., 2005, Delineation of groundwater-bearing fracture zones in a hard rock area integrating very low frequency electromagnetic and resistivity data, J. Appl. Geophy., 57(2), 155-166. 

  129. Shi, L. and Jiao, J.J., 2014, Seawater intrusion and coastal aquifer management in China: A review, Environ. Earth. Sci., 72(8), 2811-2819. 

  130. Shiklomanov, I.A., 1993, World freshwater resources. Water in crisis: a guide to the world's fresh water resources, Clim. Change, 45, 379-382. 

  131. Shin, J.H. and Byun, J.M., 2010, Fresh water injection test in a fractured bedrock aquifer for the mitigation of seawater intrusion, Econ. and Environ. Geol., 43(4), 371-379. 

  132. Singh, U., Sharma, P.K., and Ojha, C.S.P., 2019, Groundwater investigation using ground magnetic resonance and resistivity meter, ISH J. Hydraul. Eng., 27(1), 401-410. 

  133. Sinha, R., Israil, M., and Singhal, D.C., 2009, A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters of anisotropic aquifers, Hydrogeol. J., 17(495). 

  134. Slater, L.D. and Sandberg, S.K., 2000, Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients, Geophy, 65(2), 408-420. 

  135. Slater, L. and Binley, A., 2021, Advancing hydrological process understanding from long-term resistivity monitoring systems, WIREs. Water., 8(3), e1513. 

  136. Slater, L. and Lesmes, D.P., 2002, Electrical-hydraulic relationships observed for unconsolidated sediments, Water. Resour. Res., 38(10), 31-1 - 31-13. 

  137. Slater, L., Ntarlagiannis, D., and Wishart, D., 2006, On the relationship between induced polarization and surface area in metalsand and clay-sand mixtures, Geophy, 71(2), A1-A5. 

  138. Song, S.H., Yong, H.H., Kim, J.H., Song, S.Y, and Chung, H.J., 2002, Hydrogeologic structure derived from electrical and CSAMT surveys in the Chojung area, Geophys. and Geophys. Explor., 5(2), 118-125. 

  139. Song, S.H. and Yong, H., 2003. Application of SP monitoring to the analysis of anisotropy of aquifer, Econ. Environ. Geol., 36(1), 49-58. 

  140. Song, S.Y. and Nam, M.J., 2018, A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential, Geophys. and Geophys. Explor., 21(4), 231-243. 

  141. Song, Z., Zhou, Q.Y., Lu, D.B., and Xue, S., 2022, Application of Electrical Resistivity Tomography for Investigating the Internal Structure and Estimating the Hydraulic Conductivity of In Situ Single Fractures, Pure. Appl. Geophys., 1-21. 

  142. Sonkamble, S., Satishkumar, V., Amarender, B., and Sethurama, S., 2014, Combined ground-penetrating radar (GPR) and electrical resistivity applications exploring groundwater potential zones in granitic terrain, Arab. J. Geosci., 7(8), 3109-3117. 

  143. Soupios, P.M., Kouli, M., Vallianatos, F., Vafidis, A., and Stavroulakis, G., 2007, Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete-Greece), J. Hydrol. 338(1-2), 122-131. 

  144. Steyl, G. and Dennis, I, 2010, Review of coastal-area aquifers in Africa, Hydrogeol. J., 18(1), 217-225. 

  145. Straface, S., Rizzo, E., and Chidichimo, F., 2010, Estimation of hydraulic conductivity and water table map in a large-scale laboratory model by means of the self-potential method, J. Geophys. Res. Solid. Earth, 115(B6). 

  146. Swileam, G.S., Shahin, R.R., Nasr, H.M., and Essa, K.S., 2019, Spatial variability assessment of Nile alluvial soils using electrical resistivity technique, Eurasian J. Soil Sci., 8(2) 110-117. 

  147. Thiagarajan, S., Rai, S.N., Kumar, D., and Manglik, A., 2018, Delineation of groundwater resources using electrical resistivity tomography, Arab. J. Geosci., 11(9), 1-16. 

  148. Todd, D.K. and Mays, L.W., 2004, Groundwater hydrology, John Wiley & Sons. 

  149. Tronicke, J., Blindow, N., Gross, R., and Lange, M. A., 1999, Joint application of surface electrical resistivity-and GPR-measurements for groundwater exploration on the island of Spiekeroog-northern Germany, J. Hydrol., 223(1-2), 44-53. 

  150. Uhlemann, S., Kuras, O., Richards, L.A., Naden, E., and Polya, D.A., 2017, Electrical Resistivity Tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia, J. Asian Earth Sci., 147, 402-414. 

  151. Van Dam, J.C., 1976, Possibilities and limitations of the resistivity method of geoelectrical prospecting in the solution of geohydrological problems, Geoexploration, 14(3-4), 179-193. 

  152. Vogelgesang, J.A., Holt, N., Schilling, K.E., Gannon, M., and Tassier-Surine, S., 2020, Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers, J. Hydrol., 580, 123992. 

  153. Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins, Geophy, 37(1), 98-141. 

  154. Wake County Groundwater Assessment: Home, https://www2.usgs.gov/water/southatlantic/nc/projects/wake-countygroundwater/study.php, [accessed 22.03.17] 

  155. Water Souce: groundwater, https://www.canada.ca/en/environment-climate-change/services/water-overview/sources/groundwater.html#sub1, [accessed 22.03.17] 

  156. Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J.E., Meldrum, P.I., Wilkinson, P.B., Hallet, V., Quinif, Y., Ruymbeke, M.V., and Camp, M.V., 2018, Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring, Hydrol. Earth. Syst. Sci., 22(2), 1563-1592. 

  157. Waxman, M.H. and Smits, L.J.M., 1968, Electrical conductivities in oil-bearing shaly sands, Soc. Petrol. Eng. J., 8(02), 107-122. 

  158. Weiss, P.T., LeFevre, G., and Gulliver, J.S., 2008, Contamination of soil and groundwater due to stormwater infiltration practices, a literature review. 

  159. Weller, A., Slater, L., Binley, A., Nordsiek, S., and Xu, S., 2015, Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range, Geophy, 80(2), D161-D173. 

  160. Werner, A.D., Bakker, M., Post, V.E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., and Barry, D.A., 2013, Seawater intrusion processes, investigation and management: recent advances and future challenges, Adv. in water res., 51, 3-26. 

  161. West, G.F., Macnae, J.C., and Nabighian, M.N., 1987, Electromagnetic methods in applied geophysics, Vol. 2. Applications. 

  162. Won, B., Shin, J., Hwang, S.H., and Hamm, S.Y., 2013, An Electrical Resistivity Survey for the Characterization of Alluvial Layers at Groundwater Artificial Recharge Sites, Geophys. and Geophys. Explor., 16(3), 154-162. 

  163. Won, K.S., Chung, S.Y., Lee, C.S., and Jeong, J.H., 2015, Replacement of saline water through injecting fresh water into a confined saline aquifer at the nakdong river delta area, J. Eng. Geol., 25(2), 215-225. 

  164. Yao, L., Huo, Z., Feng, S., Mao, X., Kang, S., Chen, J., Xu, J., and Steenhuis, T.S., 2014, Evaluation of spatial interpolation methods for groundwater level in an arid inland oasis, northwest China, Environ. Earth. Sci., 71(4), 1911-1924. 

  165. Yu, H., Kim, B., Song, S.Y., Cho, S.O., Caesary, D., and Nam, M.J., 2019, Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection, Geophys. and Geophys. Explor., 22(3), 132-148. 

  166. Yu, X.Q., Zhao, Y.J., Wang, M.X., Liu, D., Wang, W.T., and Wang, X.Z., 2014, Combination of audio magnetotelluric and nuclear magnetic resonance used to aquifer division, J. Jilin University (Earth Science Edition), 44(1), 350-358. 

  167. Zhang, J., Chen, K., Huang, H., Zhen, L., Ju, J., and Du, S., 2021, Discussion on monitoring and characterising group drilling pumping test within a massive thickness aquifer using the time-lapse transient electromagnetic method (TEM), B. Geofis. Teor. Appl., 62(1), 119-134. 

  168. Zhu, L., Gong, H., Chen, Y., Li, X., Chang, X., and Cui, Y., 2016, Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data, Sci. Rep., 6(1), 1-8. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로