$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

충격파 완화 복합재의 설계
Design of Polymer Composites for Effective Shockwave Attenuation

Composites research = 복합재료, v.37 no.1, 2024년, pp.21 - 31  

박경민 (Department of Polymer Science and Engineering, Pusan National University) ,  조승래 (Department of Polymer Science and Engineering, Pusan National University) ,  김혜진 (Department of Polymer Science and Engineering, Pusan National University) ,  이재준 (Department of Polymer Science and Engineering, Pusan National University)

초록
AI-Helper 아이콘AI-Helper

이 리뷰 논문은 복합재에 함유되어 충격파를 감쇠하는 물질에 대한 탐구를 통해 폭발로 인한 외상성 뇌손상(bTBI)에 대비하여 인적자원을 보호하는 방법을 살펴보고자 한다. 이에 더하여 복합재의 충격파 감소의 정량화를 위한 충격파의 생성과 측정에 관련된 실험적인 방법들을 알아보고자 한다. 충격파는 고에너지 폭발물, 충격관, 레이저 및 레이저-플라이어 기술과 같은 다양한 접근법을 통해 생성이 가능하다. 충격파 전파 및 감쇠의 평가는 압전, 간섭계, 전자기 유도 및 스트릭 카메라 방법을 비롯한 첨단 기술을 활용하여 진행된다. 또한 충격파 압력감쇠 특성이 알려진 폴리우레아, 이온액체를 포함한 상분리 물질을 조사하였고 복합재 구조의 구성을 통해서 충격파를 감소시킬 수 있는 방법을 제시한다. 본 리뷰에서는 충격파 감쇠 물질 개발에 관한 연구를 종합하고 분석함으로써 폭발로 인한 외상성 뇌 손상에 대한 위험을 낮출 수 있는 재료적인 관점을 제시하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

This review paper investigates the use of shockwave attenuating materials within composite structures to enhance personnel protection against blast-induced traumatic brain injury (bTBI). This paper also introduces experimental methodologies exploited in the generation and measurement of shockwaves t...

주제어

표/그림 (17)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 논문에서는 비교적 오래전부터 개발되어 대중적으로 사용되고 있는 충격파 생성 방식에 대해 소개를 하였다. 최근에는 다양한 산업 분야에서 충격파를 활용하기 위해, 캐비테이션 버블 붕괴를 활용한 충격파 생성 방식[32], 자기 격자를 활용한 충격파 생성 방식[33], 스파크 유도 충격파 생성 방식[34] 등 여러 가지 연구가 활발하게 이루어지고 있다.
  • 본 리뷰 논문에서는 충격파 감쇠 복합재 연구의 현황을 살펴보기 위하여 실험실에서 복합재의 충격파 감쇠 특성 측정을 위해 개발된 기술들을 우선적으로 살펴보고자 한다. 충격파 감쇠를 위하여 개발된 물질들을 충격파 감쇠 특성과 연관된 물질의 인자들인 수소결합, 미세구조, 임피던스 불일치를 중심으로 살펴보고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (64)

  1. Cauble, R., et al., "Demonstration of 0.75 Gbar Planar Shocks?in X-ray Driven Colliding Foils," Physical Review Letters, Vol.?70, No. 14, 1993, pp. 2102-2105.? 

  2. Cernak, I. and Noble-Haeusslein, L.J., "Traumatic Brain Injury:?An Overview of Pathobiology with Emphasis on Military Populations," Journal of Cerebral Blood Flow & Metabolism, Vol. 30,?No. 2, 2009, pp. 255-266.? 

  3. Nakagawa, A., et al., "Primary Blast-induced Traumatic Brain?Injury: Lessons from Lithotripsy," Shock Waves, Vol. 27, No. 6,?2017, pp. 863-878.? 

  4. Nakagawa, A., et al., "Mechanisms of Primary Blast-induced?Traumatic Brain Injury: Insights from Shock-wave Research,"?Journal of Neurotrauma, Vol. 28, 2011, p 1101-1109.? 

  5. Weppner, J., Linsenmeyer, M., and Ide, W., "Military Blast-Related Traumatic Brain Injury," Current Physical Medicine and?Rehabilitation Reports, Vol. 7, No. 4, 2019, pp. 323-332.? 

  6. Magnuson, J., Leonessa, F., and Ling, G.S., "Neuropathology of?Explosive Blast Traumatic Brain Injury," Current Neurology and?Neuroscience Reports, Vol. 12, No. 5, 2012, pp. 570-579.? 

  7. Zhang, Y., Wang, L., and Ren, W., "Blast-related Traumatic?Brain Injury is Mediated by the Kynurenine Pathway," Neuroreport, Vol. 33, No. 13, 2022, pp. 569-576.? 

  8. Rosenfeld, J.V., et al., "Blast-related Traumatic Brain Injury,"?The Lancet Neurology, Vol. 12, No. 9, 2013, pp. 882-893.? 

  9. Courtney, A.C. and Courtney, M.W., "A Thoracic Mechanism?of Mild Traumatic Brain Injury due to Blast Pressure Waves,"?Medical Hypotheses, Vol. 72, No. 1, 2009, pp. 76-83.? 

  10. "Blast Injuries," New England Journal of Medicine, Vol. 352, No.?25, 2005, pp. 2651-2653.? 

  11. Cernak, I., "Understanding Blast-induced Neurotrauma: How?far have we Come?," Concussion, Vol. 2, No. 3, 2017, p. CNC42.? 

  12. Bryden, D.W., Tilghman, J.I., and Hinds, S.R., "Blast-Related?Traumatic Brain Injury: Current Concepts and Research Considerations," Journal of Experimental Neuroscience, Vol. 13,?2019, p. 1179069519872213.? 

  13. Walsh, J.M. and Christian, R.H., "Equation of State of Metals?from Shock Wave Measurements," Physical Review, Vol. 97, No.?6, 1955, pp. 1544-1556.? 

  14. Forbes, J.W., Shock Wave Compression of Condensed Matter,?Springer Berlin, Heidelberg, 2012.? 

  15. Mouritz, A.P., "Advances in Understanding the Response of?Fibre-based Polymer Composites to Shock Waves and Explosive Blasts," Composites Part A: Applied Science and Manufacturing, Vol. 125, 2019, p 105502.? 

  16. Rigden, S.M., Ahrens, T.J., and Stolper, E.M., "Shock Compression of Molten Silicate: Results for a Model Basaltic Composition," Journal of Geophysical Research: Solid Earth, Vol. 93, No.?B1, 1988, pp. 367-382.? 

  17. Zhang, L., Jackson, W.J., and Bentil, S.A., "Numerical and?Experimental Investigation of an Ultrasoft Elastomer Under?Shock Wave Loading," Journal of Dynamic Behavior of Materials,?Vol. 8, No. 1, 2022, pp. 137-154.? 

  18. Robbins, D.L., et al., "Laser-driven MiniFlyer Induced Gold?Spall," AIP Conference Proceedings, Vol. 505, No. 1, 2000, pp. 1199-1202.? 

  19. Banishev, A.A., et al., "High-Speed Laser-Launched Flyer?Impacts Studied with Ultrafast Photography and Velocimetry,"?Journal of Dynamic Behavior of Materials, Vol. 2, No. 2, 2016,?pp. 194-206.? 

  20. Askar'yan, G.A. and Moroz, E.M., "Pressure on Evaporation of?Matter in a Radiation Beam," Soviet Journal of Experimental?and Theoretical Physics, Vol. 16, 1963, p.1638.? 

  21. Anderholm, N.C., "Laser-generated Stress Waves," Applied Physics?Letters, Vol. 16, No. 3, 1970, pp. 113-115.? 

  22. Yang, L.C., "Stress Waves Generated in Thin Metallic Films by?a Q-switched Ruby Laser," Journal of Applied Physics, Vol. 45,?No. 6, 1974, pp. 2601-2608.? 

  23. White, R.M., "Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption," Journal of Applied?Physics, Vol. 34, No. 7, 1963, pp. 2123-2124.? 

  24. Ready, J.F., "Effects Due to Absorption of Laser Radiation,"?Journal of Applied Physics, Vol. 36, No. 2, 1965, pp. 462-468.? 

  25. O'Keefe, J.D., Skeen, C.H., and York, C.M., "Laser-induced?Deformation Modes in Thin Metal Targets," Journal of Applied?Physics, Vol. 44, No. 10, 1973, pp. 4622-4626.? 

  26. Fox, J.A., "Effect of Pulse Shaping on Laser-induced Spallation,"?Applied Physics Letters, Vol. 24, No. 7, 1974, pp. 340-343.? 

  27. Fairand, B.P. and Clauer, A.H., "Laser Generation of High-amplitude Stress Waves in Materials," Journal of Applied Physics, Vol.?50, No. 3, 1979, pp. 1497-1502.? 

  28. Yang, K., et al., "Shock-Induced Ordering in a Nano-segregated?Network-Forming Ionic Liquid," Journal of the American?Chemical Society, Vol. 137, No. 51, 2015, pp. 16000-16003.? 

  29. Lee, J., et al., "Shock Wave Energy Dissipation in Catalyst-Free?Poly(dimethylsiloxane) Vitrimers," Macromolecules, Vol. 53,?No. 12, 2020, pp. 4741-4747.? 

  30. Lee, J., et al., "Effect of Polymerized Ionic Liquid Structure and?Morphology on Shockwave Energy Dissipation," ACS Macro?Letters, Vol. 8, No. 5, 2019, pp. 535-539.? 

  31. Youssef, G., et al., "The Influence of Laser-induced Nanosecond Rise-time Stress Waves on the Microstructure and Surface?Chemical Activity of Single Crystal Cu Nanopillars," Journal of?Applied Physics, Vol. 113, No. 8, 2013.? 

  32. Luo, J. and Niu, Z., "Jet and Shock Wave from Collapse of Two?Cavitation Bubbles," Scientific Reports, Vol. 9, No. 1, 2019, p. 1352.? 

  33. Li, J., Chockalingam, S., and Cohen, T., "Observation of?Ultraslow Shock Waves in a Tunable Magnetic Lattice," Physical?Review Letters, Vol. 127, No. 1, 2021, p. 014302.? 

  34. Tian, Y., et al., "High-quality Electrostatic Recycling of Waste?Carbon Fiber via Spark-driven Shock Waves and Joule Heating," Composites Part B: Engineering, Vol. 263, 2023, p. 110880.? 

  35. Graham, R.A., Neilson, F.W., and Benedick, W.B., "Piezoelectric Current from Shock-Loaded Quartz-A Submicrosecond?Stress Gauge," Journal of Applied Physics, Vol. 36, No. 5, 1965,?pp. 1775-1783.? 

  36. Gupta, Y.M., "Stress Dependence of Elastic-wave Attenuation?in LiF," Journal of Applied Physics, Vol. 46, No. 8, 1975, pp.?3395-3401.? 

  37. Choi, Y., and Lee, J., "Development of Acoustic Emission?Training Technique and Localization Method using Q-switched Laser and Multiple Sensors/Single Channel Acquisition," Composites Research, Vol. 31, No. 4, 2018, pp. 145-150.? 

  38. Sheffield, S.A., Gustavsen, R.L., and Alcon, R.R., "In-situ Magnetic Gauging Technique Used at LANL-method and Shock?Information Obtained," AIP Conference Proceedings, Vol. 505,?No. 1, 2000, pp. 1043-1048.? 

  39. Urtiew, P.A., et al., "Pressure and Particle Velocity Measurements in Solids Subjected to Dynamic Loading," Combustion,?Explosion and Shock Waves, Vol. 22, No. 5, 1986, pp. 597-614.? 

  40. Teipel, U., Energetic Materials: Particle Processing and Characterization, Wiley-VCH, 2006.? 

  41. Barker, L.M. and Hollenbach, R.E., "Laser Interferometer for?Measuring High Velocities of any Reflecting Surface," Journal of?Applied Physics, Vol. 43, No. 11, 1972, pp. 4669-4675.? 

  42. McMillan, C.F., et al., "Velocimetry of Fast Surfaces Using?Fabry-perot Interferometry," Review of Scientific Instruments,?Vol. 59, No. 1, 1988, pp. 1-21.? 

  43. Strand, O.T., et al., "Compact System for High-speed Velocimetry Using Heterodyne Techniques," Review of Scientific Instruments, Vol. 77, No. 8, 2006.? 

  44. Arman, B., Reddy, A.S., and Arya, G., "Viscoelastic Properties?and Shock Response of Coarse-Grained Models of Multiblock?versus Diblock Copolymers: Insights into Dissipative Properties of Polyurea," Macromolecules, Vol. 45, No. 7, 2012, pp.?3247-3255.? 

  45. Castagna, A.M., et al., "The Role of Soft Segment Molecular?Weight on Microphase Separation and Dynamics of Bulk?Polymerized Polyureas," Macromolecules, Vol. 45, No. 20, 2012,?pp. 8438-8444.? 

  46. Bogoslovov, R.B., Roland, C.M., and Gamache, R.M., "Impact-induced Glass Transition in Elastomeric Coatings," Applied?Physics Letters, Vol. 90, No. 22, 2007.? 

  47. Grujicic, M., et al., "Computational Investigation of Impact?Energy Absorption Capability of Polyurea Coatings via Deformation-induced Glass Transition," Materials Science and Engineering: A, Vol. 527, No. 29-30, 2010, pp. 7741-7751.? 

  48. Grujicic, M., et al., "Molecular-level Simulations of Shock Generation and Propagation in Polyurea," Materials Science and?Engineering: A, Vol. 528, No. 10, 2011, pp. 3799-3808.? 

  49. Grujicic, M., et al., "Molecular-level Computational Investigation of Shock-wave Mitigation Capability of Polyurea," Journal?of Materials Science, Vol. 47, No. 23, 2012, pp. 8197-8215.? 

  50. Grujicic, M., et al., "Coarse-grained Molecular-level Analysis of?Polyurea Properties and Shock-mitigation Potential," Journal of?Materials Engineering and Performance, Vol. 22, No. 7, 2013,?pp. 1964-1981.? 

  51. Yang, K., et al., "Shock-Induced Ordering in a Nano-segregated?Network-Forming Ionic Liquid," Journal of the American?Chemical Society, Vol. 137, No. 51, 2015, pp. 16000-16003.? 

  52. Zheng, W., et al., "Effect of Cation Symmetry on the Morphology and Physicochemical Properties of Imidazolium Ionic Liquids," The Journal of Physical Chemistry B, Vol. 115, No. 20,?2011, pp. 6572-6584.? 

  53. Gardas, R.L., et al., "High-Pressure Densities and Derived?Thermodynamic Properties of Imidazolium-Based Ionic Liquids," Journal of Chemical & Engineering Data, Vol. 52, No. 1,?2007, pp. 80-88.? 

  54. Elder, R.M., et al., "Shock-wave Propagation and Reflection in?Semicrystalline Polyethylene: A Molecular-level Investigation,"?Physical Review Materials, Vol. 1, No. 4, 2017.? 

  55. Hui, D. and Dutta, P.K., "A New Concept of Shock Mitigation?by Impedance-graded Materials," Composites Part B: Engineering, Vol. 42, No. 8, 2011, pp. 2181-2184.? 

  56. Byung-Chan, L., et al., "Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites," Composites Research, Vol.?28, No. 6, 2015, pp. 389-394.? 

  57. Lee, H., et al., "Influence of Stacking Sequence on Carbon?Fiber/Aramid Fiber Hybrid Composite," Composites Research,?Vol. 36, No. 6, 2023, pp. 383-387.? 

  58. Park, S.H., et al., "Acoustic Loads Reduction of Composite?Plates for Nose Fairing Structure," Composites Research, Vol. 17,?No. 3, 2004, pp. 15-22.? 

  59. Zhuang, S., Ravichandran, G., and Grady, D.E., "An Experimental Investigation of Shock Wave Propagation in Periodically Layered Composites," Journal of the Mechanics and Physics?of Solids, Vol. 51, 2003, pp. 245-265.? 

  60. Petel, O.E., et al., "Blast Wave Attenuation Through a Composite of Varying Layer Distribution," Shock Waves, Vol. 21, No.?3, 2011, pp. 215-224. 

  61. Grujicic, M., et al., "Blast-wave Impact-mitigation Capability of?Polyurea when Used as Helmet Suspension-pad Material,"?Materials & Design, Vol. 31, No. 9, 2010, pp. 4050-4065.? 

  62. Schimizze, B., et al., "An Experimental and Numerical Study of?Blast Induced Shock Wave Mitigation in Sandwich Structures,"?Applied Acoustics, Vol. 74, No. 1, 2013, pp. 1-9.? 

  63. Nesterenko, V.F., "Shock (Blast) Mitigation by "Soft" Condensed Matter," Materials Research Society, 2003.? 

  64. Youssef, G. and Gupta, V., "Resonance in Polyurea-Based Multilayer Structures Subjected to Laser-Generated Stress Waves,"?Experimental Mechanics, Vol. 53, No. 2, 2012, pp. 145-154. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로