$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미래 국방 무인 이동체를 위한 NaBH4 수소 발생 시스템 기반 연료전지 시스템 설계 및 검증
Design and Validation of a Fuel Cell System with a NaBH4 Hydrogen Generation System for Future Defense Unmanned Vehicles

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.35 no.2, 2024년, pp.152 - 161  

윤성모 (국립창원대학교 스마트제조융합협동과정) ,  김민재 (국립창원대학교 스마트제조융합협동과정) ,  황채민 (국립창원대학교 기계공학부) ,  이태훈 (한국자동차연구원 수소연료전지기술부문) ,  유수상 (현대위아 특수개발2팀) ,  오택현 (국립창원대학교 기계공학부)

Abstract AI-Helper 아이콘AI-Helper

In this study, a fuel cell system for future defense unmanned vehicles was designed and validated. A Co/Al2O3-Ni foam catalyst for NaBH4 hydrolysis was characterized using several analytical methods. A NaBH4 hydrogen generation system with the Co/Al2O3-Ni foam catalyst continuously generated hydroge...

주제어

참고문헌 (27)

  1. Y. S. Joo, K. N. Jo, J. I. Kim, K. M. Lee, S. G. Han, M. C. Park, J. S. Ryu, J. S. Woo, and M. G. Han, "Design and experiment of coastal autonomous underwater vehicle 'OKPO-600'", Proceedings of the KOSME Conference, 2009, pp. 339-340. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeIdNODE01210812. 

  2. T. Kim and S. Kwon, "Design and development of a fuel cell-powered small unmanned aircraft", International Journal of Hydrogen Energy, Vol. 37, No. 1, 2012, pp. 615-622, doi: https://doi.org/10.1016/j.ijhydene.2011.09.051. 

  3. N. Lapena-Rey, J. A. Blanco, E. Ferreyra, J. L. Lemus, S. Pereira, and E. Serrot, "A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions", International Journal of Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 6926-6940, doi: https://doi.org/10.1016/j.ijhydene.2017.01.137. 

  4. J. Lee, S. Lee, D. Han, G. Gwak, and H. Ju, "Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions", International Journal of Hydrogen Energy, Vol. 42, No. 3, 2017, pp. 1736-1750, doi: https://doi.org/10.1016/j.ijhydene.2016.09.087. 

  5. T. H. Kin, W. Y. Shieh, C. C. Yang, and G. Yu, "Estimating the methanol crossover rate of PEM and the efficiency of DMFC via a current transient analysis", Journal of Power Sources, Vol. 161, No. 2, 2006, pp. 1183-1186, doi: https://doi.org/10.1016/j.jpowsour.2006.06.009. 

  6. M. M. Kreevoy and R. W. Jacobson, "The rate of decomposition of NaBH 4 in basic aqueous solutions", Ventron Alembic, Vol. 15, No. 2, 1979, pp. 2-3. 

  7. Y. Liang, H. B. Dai, L. P. Ma, P. Wang, and H. M. Cheng, "Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst", International Journal of Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 3023-3028, doi: https://doi.org/10.1016/j.ijhydene.2009.07.008. 

  8. J. Zhang, Y. Li, L. Yang, F. Zhang, R. Li, and H. Dong, "Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis", Catalysis Letters, Vol. 152, 2022, pp. 1386-1391, doi: https://doi.org/10.1007/s10562-021-03730-5. 

  9. V. G. Minkina, S. I. Shabunya, V. I. Kalinin, and A. Smirnova, "Hydrogen generation from sodium borohydride solutions for stationary applications", International Journal of Hydrogen Energy, Vol. 41, No. 22, 2016, pp. 9227-9233, doi: https://doi.org/10.1016/j.ijhydene.2016.03.063. 

  10. A. Uzundurukan and Y. Devrim, "Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: a kinetic study", International Journal of Hydrogen Energy, Vol. 44, No. 33, 2019, pp. 17586-17594, doi: https://doi.org/10.1016/j.ijhydene.2019.04.188. 

  11. J. Lee, K. Y. Kong, C. R. Jung, E. Cho, S. P. Yoon, J. Han, T. G. Lee, and S. W. Nam, "A structured Co-B catalyst for hydrogen extraction from NaBH 4 solution", Catalysis Today, Vol. 120, No. 3-4, 2007, pp. 305-310, doi: https://doi.org/10.1016/j.cattod.2006.09.019. 

  12. S. Fang, Y. Chen, S. Wang, J. Xu, Y. Xia, F. Yang, Y. Wang, J. Lao, C. Xiang, F. Xu, L. Sun, Y. Zou, and H. Pan, "Modified CNTs interfacial anchoring and particle-controlled synthesis of amorphous cobalt-nickel-boron alloy bifunctional materials for NaBH 4 hydrolysis and supercapacitor energy storage", Journal of Alloys and Compounds, Vol. 936, 2023, pp. 167990, doi: https://doi.org/10.1016/j.jallcom.2022.167990. 

  13. T. H. Oh and S. Kwon, "Effect of bath composition on properties of electroless deposited Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution", International Journal of Hydrogen Energy, Vol. 37, No. 22, 2012, pp. 17027-17039, doi: https://doi.org/10.1016/j.ijhydene.2012.08.083. 

  14. Y. Wei, M. Wang, W. Fu, L. Wei, X. Zhao, X. Zhou, M. Ni, and H. Wang, "Highly active and durable catalyst for hydrogen generation by the NaBH 4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure", Journal of Alloys and Compounds, Vol. 836, 2020, pp. 155429, doi: https://doi.org/10.1016/j.jallcom.2020.155429. 

  15. X. Luo, L. Sun, F. Xu, Z. Cao, J. Zeng, Y. Bu, C. Zhang, Y. Xia, Y. Zou, K. Zhang, and H. Pan, "Metal boride-decorated CoNi layered double hydroxides supported on muti-walled carbon nanotubes as efficient hydrolysis catalysts for sodium borohydride", Journal of Alloys and Compounds, Vol. 930, 2023, pp. 167339, doi: https://doi.org/10.1016/j.jallcom.2022.167339. 

  16. S. M. Yun, T. H. Lee, and T. H. Oh, "A study on characteristics of NaBH 4 hydrolysis using Co/Al 2 O 3 nanopowder catalyst", Journal of Hydrogen and New Energy, Vol. 33, No. 4, 2022, pp. 343-352, doi: https://doi.org/10.7316/KHNES.2022.33.4.343. 

  17. H. R. Lee, D. H. Park, W. Ju, I. C. Na, and K. P. Park, "Characteristics of byproduct after NaBH 4 hydrolysis reaction using unsupported catalyst", Korean Chemical Engineering Research, Vol. 55, No. 1, 2017, pp. 13-18, doi: https://doi.org/10.9713/kcer.2017.55.1.13. 

  18. H. Li, B. Li, Y. Zou, C. Xiang, H. Zhang, F. Xu, L. Sun, and K. He, "Modulating valence band to enhance the catalytic activity of Co-Cr-B/NG for hydrolysis of sodium borohydride", Journal of Alloys and Compounds, Vol. 924, 2022, pp. 166556, doi: https://doi.org/10.1016/j.jallcom.2022.166556. 

  19. Y. Liang, P. Wang, and H. B. Dai, "Hydrogen bubbles dynamic template preparation of a porous Fe-Co-B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution", Journal of Alloys and Compounds, Vol. 491, No. 1-2, 2010, pp. 359-365, doi: https://doi.org/10.1016/j.jallcom.2009.10.183. 

  20. H. Kim, T. H. Oh, and S. Kwon, "Simple catalyst bed sizing of a NaBH 4 hydrogen generator with fast startup for small unmanned aerial vehicles", International Journal of Hydrogen Energy, Vol. 41, No. 2, 2016, pp. 1018-1026, doi: https://doi.org/10.1016/j.ijhydene.2015.11.134. 

  21. T. H. Oh and S. Kwon, "Performance evaluation of hydrogen generation system using NaBH 4 hydrolysis for 200 W fuel cell powered UAV", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 43, No. 4, 2015, pp. 296-303, doi: https://doi.org/10.5139/JKSAS.2015.43.4.296. 

  22. D. I. Park, S. U. Kim, D. M. Kim, and T. G. Kim, "Performance evaluation of hydrogen generator for fuel cell unmanned aircraft", Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 7, 2011, pp. 627-633, doi: https://doi.org/10.5139/JKSAS.2011.39.7.627. 

  23. T. Oh and S. Kwon, "Effect of additives for prevention of NaBO 2 precipitation on hydrogen generation properties of NaBH 4 hydrolysis", Journal of Hydrogen and New Energy, Vol. 24, No. 1, 2013, pp. 1-11, doi: https://doi.org/10.7316/KHNES.2013.24.1.001. 

  24. T. H. Oh and S. Kwon, "Performance evaluation of hydrogen generation system with electroless-deposited Co-P/Ni foam catalyst for NaBH 4 hydrolysis", International Journal of Hydrogen Energy, Vol. 38, No. 15, 2013, pp. 6425-6435, doi: https://doi.org/10.1016/j.ijhydene.2013.03.068. 

  25. D. Park, D. J. Moon, and T. Kim, "Steam-CO 2 reforming of methane on Ni/γ-Al 2 O 3 -deposited metallic foam catalyst for GTL-FPSO process", Fuel Processing Technology, Vol. 112, 2013, pp. 28-34, doi: https://doi.org/10.1016/j.fuproc.2013.02.016. 

  26. M. Huang, F. Li, J. Y. Ji, Y. X. Zhang, X. L. Zhao, and X. Gao, "Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors", Cryst-EngComm, Vol. 16, No. 14, 2014, pp. 2878-2884, doi: https://doi.org/10.1039/C3CE42335B. 

  27. H. L. Lee and J. H. Lee, "Development of multi-functional mulch papers and evaluation of their performance (part 3) - defoaming treatment during trial production of mulch papers and their influence on wet end system -", Journal of Korea Technical Association of The Pulp and Paper Industry, Vol. 32, No. 3, 2000, pp. 25-31. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeIdNODE00295473. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로