$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microautophagy – distinct molecular mechanisms handle cargoes of many sizes 원문보기

Journal of cell science, v.133 no.17, 2020년, pp.jcs246322 - jcs246322  

Schuck, Sebastian (Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany)

Abstract AI-Helper 아이콘AI-Helper

Autophagy is fundamental for cell and organismal health. Two types of autophagy are conserved in eukaryotes: macroautophagy and microautophagy. During macroautophagy, autophagosomes deliver cytoplasmic constituents to endosomes or lysosomes, whereas during microautophagy lytic organelles take up cyt...

주제어

참고문헌 (95)

  1. eLife Adell 6 e31652 2017 10.7554/eLife.31652 Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding 

  2. Exp. Mol. Pathol. Ahlberg 42 78 1985 10.1016/0014-4800(85)90020-6 Uptake-microautophagy-and degradation of exogenous proteins by isolated rat liver lysosomes: effects of pH, ATP, and inhibitors of proteolysis 

  3. J. Cell Biol. Bae 218 1118 2019 10.1083/jcb.201809027 Degradation of Blos1 mRNA by IRE1 repositions lysosomes and protects cells from stress 

  4. Nature Bohnert 551 629 2017 10.1038/nature24620 A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage 

  5. J. Cell Biol. Buono 216 2167 2017 10.1083/jcb.201612040 ESCRT-mediated vesicle concatenation in plant endosomes 

  6. J. Cell Sci. Campbell 111 2455 1998 10.1242/jcs.111.16.2455 Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments 

  7. Biophys. J. Chan 106 1986 2014 10.1016/j.bpj.2014.03.014 Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates 

  8. Mol. Biol. Cell Chang 16 4941 2005 10.1091/mbc.e05-02-0143 PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris 

  9. Plant Cell Chanoca 27 2545 2015 10.1105/tpc.15.00589 Anthocyanin vacuolar inclusions form by a microautophagy mechanism 

  10. J. Biol. Chem. Chiang 271 9934 1996 10.1074/jbc.271.17.9934 Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation 

  11. Mol. Biol. Cell Dawaliby 21 4173 2010 10.1091/mbc.e09-09-0782 Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions 

  12. Annu. Rev. Physiol. De Duve 28 435 1966 10.1146/annurev.ph.28.030166.002251 Functions of lysosomes 

  13. Mol. Cell Dubouloz 19 15 2005 10.1016/j.molcel.2005.05.020 The TOR and EGO protein complexes orchestrate microautophagy in yeast 

  14. Nat. Rev. Mol. Cell Biol. Farré 17 537 2016 10.1038/nrm.2016.74 Mechanistic insights into selective autophagy pathways: lessons from yeast 

  15. Dev. Cell Farré 14 365 2008 10.1016/j.devcel.2007.12.011 PpAtg30 tags peroxisomes for turnover by selective autophagy 

  16. EMBO Rep. Farré 14 441 2013 10.1038/embor.2013.40 Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11 

  17. Autophagy Fry 2 280 2006 10.4161/auto.3164 Role of Vac8 in cellular degradation pathways in Pichia pastoris 

  18. Mol. Cells Fukuda 41 35 2018 10.14348/molcells.2018.2214 Mechanisms and physiological roles of mitophagy in yeast 

  19. Nat. Cell Biol. Fumagalli 18 1173 2016 10.1038/ncb3423 Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery 

  20. Mol. Biol. Cell Guan 12 3821 2001 10.1091/mbc.12.12.3821 Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris 

  21. Curr. Genet. Hatakeyama 65 1243 2019 10.1007/s00294-019-00982-y TORC1 specifically inhibits microautophagy through ESCRT-0 

  22. Mol. Cell Hatakeyama 73 325 2019 10.1016/j.molcel.2018.10.040 Spatially distinct pools of TORC1 balance protein homeostasis 

  23. J. Biol. Chem. Iwama 294 5590 2019 10.1074/jbc.RA118.005698 Analysis of autophagy activated during changes in carbon source availability in yeast cells 

  24. Nat. Commun. Kawamura 3 1071 2012 10.1038/ncomms2069 Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos 

  25. Autophagy Kiššová 3 329 2007 10.4161/auto.4034 Selective and non-selective autophagic degradation of mitochondria in yeast 

  26. Autophagy Klionsky 10 549 2014 10.4161/auto.28448 The vacuole versus the lysosome: when size matters 

  27. Autophagy Knorr 11 2134 2015 10.1080/15548627.2015.1091552 Autophagosome closure requires membrane scission 

  28. Traffic Knorr 18 758 2017 10.1111/tra.12509 Fusion and scission of membranes: ubiquitous topological transformations in cells 

  29. Mol. Biol. Cell Krick 19 4492 2008 10.1091/mbc.e08-04-0363 Piecemeal microautophagy of the nucleus requires the core macroautophagy genes 

  30. J. Biol. Chem. Kunz 279 9987 2004 10.1074/jbc.M307905200 Determination of four sequential stages during microautophagy in vitro 

  31. Cell Levine 176 11 2019 10.1016/j.cell.2018.09.048 Biological functions of autophagy genes: a disease perspective 

  32. PLoS Genet. Li 15 e1008387 2019 10.1371/journal.pgen.1008387 AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation 

  33. Biol. Chem. Lipowsky 395 253 2014 10.1515/hsz-2013-0244 Remodeling of membrane compartments: some consequences of membrane fluidity 

  34. Mol. Cell Liu 59 1035 2015 10.1016/j.molcel.2015.07.034 ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos 

  35. Nat. Commun. Loi 10 5058 2019 10.1038/s41467-019-12991-z ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress 

  36. Cold Spring Harb. Perspect. Biol. Luzio 6 a016840 2014 10.1101/cshperspect.a016840 The biogenesis of lysosomes and lysosome-related organelles 

  37. Exp. Cell Res. Marzella 129 460 1980 10.1016/0014-4827(80)90515-7 In vitro uptake of particles by lysosomes 

  38. Annu. Rev. Cell Dev. Biol. McCullough 34 85 2018 10.1146/annurev-cellbio-100616-060600 Structures, functions, and dynamics of ESCRT-III/Vps4 membrane remodeling and fission complexes 

  39. J. Cell Biol. Mejlvang 217 3640 2018 10.1083/jcb.201711002 Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy 

  40. Autophagy Mesquita 2020 10.1080/15548627.2020.1783833 Differential activation of eMI by distinct forms of cellular stress 

  41. Annu. Rev. Cell Dev. Biol. Mizushima 27 107 2011 10.1146/annurev-cellbio-092910-154005 The role of Atg proteins in autophagosome formation 

  42. J. Ultrastruct. Res. Moeller 68 28 1979 10.1016/S0022-5320(79)90139-4 An ultrastructural study of the yeast tonoplast during the shift from exponential to stationary phase 

  43. J. Ultrastruct. Res. Moeller 68 38 1979 10.1016/S0022-5320(79)90140-0 Uptake of lipid bodies by the yeast vacuole involving areas of the tonoplast depleted of intramembranous particles 

  44. Biochim. Biophys. Acta Moeller 643 376 1981 10.1016/0005-2736(81)90082-1 Lipid phase separations and intramembranous particle movements in the yeast tonoplast 

  45. FEBS Lett. Monastryska 568 135 2004 10.1016/j.febslet.2004.05.018 Microautophagy and macropexophagy may occur simultaneously in Hansenula polymorpha 

  46. Annu. Rev. Cell Dev. Biol. Morishita 35 453 2019 10.1146/annurev-cellbio-100818-125300 Diverse cellular roles of autophagy 

  47. Biochem. Biophys. Res. Commun. Morshed 522 88 2020 10.1016/j.bbrc.2019.11.064 TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast 

  48. Cell Rep. Mostofa 28 3423 2019 10.1016/j.celrep.2019.08.059 rDNA condensation promotes rDNA separation from nucleolar proteins degraded for nucleophagy after TORC1 inactivation 

  49. Genes Cells Mukaiyama 7 75 2002 10.1046/j.1356-9597.2001.00499.x Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy 

  50. Mol. Biol. Cell Mukaiyama 15 58 2004 10.1091/mbc.e03-05-0340 Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure 

  51. Autophagy Mukherjee 12 1984 2016 10.1080/15548627.2016.1208887 Selective endosomal microautophagy is starvation-inducible in Drosophila 

  52. J. Cell Biol. Müller 151 519 2000 10.1083/jcb.151.3.519 Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding 

  53. Plant Signal. Behav. Nakamura 14 1554469 2019 10.1080/15592324.2018.1558679 Chlorophagy is ATG gene-dependent microautophagy process 

  54. Plant Physiol. Nakamura 177 1007 2018 10.1104/pp.18.00444 Selective elimination of membrane-damaged chloroplasts via microautophagy 

  55. Histochemistry Neiss 80 603 1984 10.1007/BF02400979 A coat of glycoconjugates on the inner surface of the lysosomal membrane in the rat kidney 

  56. Cell Death Differ. Nowikovsky 14 1647 2007 10.1038/sj.cdd.4402167 Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy 

  57. Cell Res. Ohsumi 24 9 2014 10.1038/cr.2013.169 Historical landmarks of autophagy research 

  58. Bioessays Oku 40 e1800008 2018 10.1002/bies.201800008 Three distinct types of microautophagy based on membrane dynamics and molecular machineries 

  59. Autophagy Oku 2 272 2006 10.4161/auto.3135 Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy 

  60. J. Cell Biol. Oku 216 3263 2017 10.1083/jcb.201611029 Evidence for ESCRT- and clathrin-dependent microautophagy 

  61. Proc. Natl. Acad. Sci. USA Omari 115 E10099 2018 10.1073/pnas.1814552115 Noncanonical autophagy at ER exit sites regulates procollagen turnover 

  62. Autophagy Otto 2020 10.1080/15548627.2020.1725402 Mechanistic dissection of macro- and micronucleophagy 

  63. Mol. Biol. Cell Pan 11 2445 2000 10.1091/mbc.11.7.2445 Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p 

  64. Mol. Biol. Cell Roberts 14 129 2003 10.1091/mbc.e02-08-0483 Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae 

  65. Dev. Cell Sahu 20 131 2011 10.1016/j.devcel.2010.12.003 Microautophagy of cytosolic proteins by late endosomes 

  66. Acta Histochem. Cytochem. Saito 7 1 1974 10.1267/ahc.7.1 Lysosomal changes in rat hepatic parenchymal cells after glucagon administration 

  67. J. Cell Biol. Sakai 141 625 1998 10.1083/jcb.141.3.625 Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates 

  68. J. Cell Biol. Sattler 151 529 2000 10.1083/jcb.151.3.529 Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation 

  69. EMBO J. Schäfer 39 e102586 2020 10.1101/661306 ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast 

  70. J. Cell Sci. Schuck 127 4078 2014 10.1242/jcs.154716 ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery 

  71. eLife Seo 6 e21690 2017 10.7554/eLife.21690 AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation 

  72. Cells Sieńko 9 887 2020 10.3390/cells9040887 Microautophagy in Plants: consideration of Its Molecular Mechanism 

  73. Plant Cell Spitzer 27 391 2015 10.1105/tpc.114.135939 The endosomal protein charged multivesicular body protein1 regulates the autophagic turnover of plastids in Arabidopsis 

  74. J. Biol. Chem. Strømhaug 276 42422 2001 10.1074/jbc.M104087200 gsa11encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris 

  75. Nat. Commun. Takahashi 9 2855 2018 10.1038/s41467-018-05254-w An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure 

  76. J. Cell Biol. Tamura 202 685 2013 10.1083/jcb.201302067 Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity 

  77. J. Biol. Chem. Tekirdag 293 5414 2017 10.1074/jbc.R117.818237 Chaperone-mediated autophagy and endosomal microautophagy: jointed by a chaperone 

  78. J. Cell Biol. Toulmay 202 35 2013 10.1083/jcb.201301039 Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells 

  79. eLife Tsuji 6 e25960 2017 10.7554/eLife.25960 Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole 

  80. Eur. J. Cell Biol. Tuttle 60 283 1993 Selective autophagy of peroxisomes in methylotrophic yeasts 

  81. Neuron Uytterhoeven 88 735 2015 10.1016/j.neuron.2015.10.012 Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy 

  82. Mol. Biol. Cell van Zutphen 25 290 2014 10.1091/mbc.e13-08-0448 Lipid droplet autophagy in the yeast Saccharomyces cerevisiae 

  83. Nat. Rev. Mol. Cell Biol. Vietri 21 25 2020 10.1038/s41580-019-0177-4 The many functions of ESCRTs 

  84. J. Cell Sci. Vigié 132 jcs221655 2019 10.1242/jcs.221655 The mitochondrial phosphatidylserine decarboxylase Psd1 is involved in nitrogen starvation-induced mitophagy in yeast 

  85. J. Biol. Chem. Wang 276 35133 2001 10.1074/jbc.M103937200 Fusion of docked membranes requires the armadillo repeat protein Vac8p 

  86. Cell Wang 108 357 2002 10.1016/S0092-8674(02)00632-3 Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle 

  87. J. Cell Biol. Wang 206 357 2014 10.1083/jcb.201404115 A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast 

  88. J. Cell Biol. Ward 139 665 1997 10.1083/jcb.139.3.665 Homotypic lysosome fusion in macrophages: analysis using an in vitro assay 

  89. J. Mol. Biol. Wen 428 1681 2016 10.1016/j.jmb.2016.02.021 An overview of macroautophagy in yeast 

  90. Annu. Rev. Cell Dev. Biol. Wickner 26 115 2010 10.1146/annurev-cellbio-100109-104131 Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles 

  91. Mol. Biol. Cell Xie 19 3290 2008 10.1091/mbc.e07-12-1292 Atg8 controls phagophore expansion during autophagosome formation 

  92. J. Cell Biol. Yang 219 2490 2020 10.1083/jcb.201902127 TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy 

  93. Cell Discov. Yim 6 6 2020 10.1038/s41421-020-0141-7 Lysosome biology in autophagy 

  94. J. Biol. Chem. Yogalingam 288 18947 2013 10.1074/jbc.M113.466870 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cδ (PKCδ) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury 

  95. eLife Zhu 6 e26403 2017 10.7554/eLife.26403 ESCRTs function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로