$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants 원문보기

Frontiers in plant science, v.12, 2021년, pp.786688 -   

Hoshikawa, Ken (Japan International Research Center for Agricultural Sciences , Tsukuba , Japan) ,  Pham, Dung (Faculty of Biotechnology, Vietnam National University of Agriculture , Hanoi , Vietnam) ,  Ezura, Hiroshi (Tsukuba Plant Innovation Research Center, University of Tsukuba , Tsukuba , Japan) ,  Schafleitner, Roland (Vegetable Diversity and Improvement, World Vegetable Center , Tainan , Taiwan) ,  Nakashima, Kazuo (Japan International Research Center for Agricultural Sciences , Tsukuba , Japan)

Abstract AI-Helper 아이콘AI-Helper

Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops...

주제어

참고문헌 (174)

  1. Ainsworth E.A. Rogers A. ( 2007 ). The response of photosynthesis and stomatal conductance to rising [CO 2 ]: mechanisms and environmental interactions . Plant Cell Environ. 30 , 258 – 270 . 10.1111/j.1365-3040.2007.01641.x 17263773 

  2. Aleem S. Sharif I. Amin E. Tahir M. Parveen N. Aslam R. . ( 2020 ). Heat tolerance in vegetables in the current genomic era: an overview . Plant Growth Regul. 20 , 1 – 20 . 10.1007/s10725-020-00658-5 

  3. Ali M.M. Waleed Shafique M. Gull S. Afzal Naveed W. Javed T. Yousef A.F. . ( 2021 ). Alleviation of heat stress in tomato by exogenous application of sulfur . Horticulturae 7 : 21 . 10.3390/horticulturae7020021 

  4. Allakhverdiev S.I. Kreslavski V.D. Klimov V.V. Los D.A. Carpentier R. Mohanty P. ( 2008 ). Heat stress: an overview of molecular responses in photosynthesis . Photosynthesis Res. 98 : 541 . 10.1007/s11120-008-9331-0 18649006 

  5. Ariizumi T. Higuchi K. Arakaki S. Sano T. Asamizu E. Ezura H. ( 2011 ). Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits . J. Exp. Bot. 62 , 2773 – 2786 . 10.1093/jxb/erq451 21282322 

  6. Ariizumi T. Shinozaki Y. Ezura H. ( 2013 ). Genes that influence yield in tomato . Breed. Sci. 63 , 3 – 13 . 10.1270/jsbbs.63.3 23641176 

  7. Ayenan M.A.T. Danquah A. Hanson P. Ampomah-Dwamena C. Sodedji F.A.K. Asante I.K. . ( 2019 ). Accelerating breeding for heat tolerance in tomato ( Solanum lycopersicum L.): an integrated approach . Agronomy 9 : 720 . 10.3390/agronomy9110720 

  8. Balyan S. Rao S. Jha S. Bansal C. Das J.R. Mathur S. ( 2020 ). Characterization of novel regulators for heat stress tolerance in tomato from Indian sub-continent . Plant Biotechnol. J. 18 , 2118 – 2132 . 10.1111/pbi.13371 32163647 

  9. Baniwal S.K. Bharti K. Chan K.Y. Fauth M. Ganguli A. Kotak S. . ( 2004 ). Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors . J. Biosci. (Bangalore) 29 , 471 – 487 . 10.1007/BF02712120 15625403 

  10. Barker L. Kühn C. Weise A. Schulz A. Gebhardt C. Hirner B. . ( 2000 ). SUT2, a putative sucrose sensor in sieve elements . Plant Cell 12 , 1153 – 1164 . 10.1105/tpc.12.7.1153 10899981 

  11. Barnabás B. Jäger K. Fehér A. ( 2008 ). The effect of drought and heat stress on reproductive processes in cereals . Plant Cell Environ. 31 , 11 – 38 . 10.1111/j.1365-3040.2007.01727.x 17971069 

  12. Barrero L. Cong B. Wu F. Tanksley S. ( 2006 ). Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato . Genome 49 , 991 – 1006 . 10.1139/g06-059 17036074 

  13. Beckles D.M. Hong N. Stamova L. Luengwilai K. ( 2012 ). Biochemical factors contributing to tomato fruit sugar content: a review . Fruits 67 , 49 – 64 . 10.1051/fruits/2011066 

  14. Bergougnoux V. ( 2014 ). The history of tomato: from domestication to biopharming . Biotechnol. Adv. 32 , 170 – 189 . 10.1016/j.biotechadv.2013.11.003 24211472 

  15. Bineau E. Diouf I. Carretero Y. Duboscq R. Bitton F. Djari A. . ( 2021 ). Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels . Plant J. 107 , 1213 – 1227 . 10.1111/tpj.15379 34160103 

  16. Bita C. Gerats T. ( 2013 ). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops . Front. Plant Sci. 4 : 273 . 10.3389/fpls.2013.00273 23914193 

  17. Bokszczanin K.L. Fragkostefanakis S. Bostan H. Bovy A. Chaturvedi P. Chiusano M.L. . ( 2013 ). Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance . Front. Plant Sci. 4 : 315 . 10.3389/fpls.2013.00315 23986766 

  18. Bose J. Rodrigo-Moreno A. Shabala S. ( 2014 ). ROS homeostasis in halophytes in the context of salinity stress tolerance . J. Exp. Bot. 65 , 1241 – 1257 . 10.1093/jxb/ert430 24368505 

  19. Busi M.V. Bustamante C. D'angelo C. Hidalgo-Cuevas M. Boggio S.B. Valle E.M. . ( 2003 ). MADS-box genes expressed during tomato seed and fruit development . Plant Mol. Biol. 52 , 801 – 815 . 10.1023/A:1025001402838 13677468 

  20. Carrari F. Baxter C. Usadel B. Urbanczyk-Wochniak E. Zanor M.-I. Nunes-Nesi A. . ( 2006 ). Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior . Plant Physiol. 142 , 1380 – 1396 . 10.1104/pp.106.088534 17071647 

  21. Chen L. Ren Y. Zhang Y. Xu J. Sun F. Zhang Z. . ( 2012 ). Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa . Gene 504 , 160 – 165 . 10.1016/j.gene.2012.05.034 22634103 

  22. Cheng L. Zou Y. Ding S. Zhang J. Yu X. Cao J. . ( 2009 ). Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress . J. Integr. Plant Biol. 51 , 489 – 499 . 10.1111/j.1744-7909.2009.00816.x 19508360 

  23. Cheniclet C. Rong W.Y. Causse M. Frangne N. Bolling L. Carde J.-P. . ( 2005 ). Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth . Plant Physiol. 139 , 1984 – 1994 . 10.1104/pp.105.068767 16306145 

  24. Chusreeaeom K. Ariizumi T. Asamizu E. Okabe Y. Shirasawa K. Ezura H. ( 2014 ). Regulatory change in cell division activity and genetic mapping of a tomato ( Solanum lycopersicum L.) elongated-fruit mutant . Plant Biotechnol. , 14 : 0204a . 10.5511/plantbiotechnology.14.0204a 

  25. de Jong M. Mariani C. Vriezen W.H. ( 2009 ). The role of auxin and gibberellin in tomato fruit set . J. Exp. Bot. 60 , 1523 – 1532 . 10.1093/jxb/erp094 19321650 

  26. de Martino G. Pan I. Emmanuel E. Levy A. Irish V.F. ( 2006 ). Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development . Plant Cell 18 , 1833 – 1845 . 10.1105/tpc.106.042978 16844904 

  27. Demidchik V. Straltsova D. Medvedev S.S. Pozhvanov G.A. Sokolik A. Yurin V. ( 2014 ). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment . J. Exp. Bot. 65 , 1259 – 1270 . 10.1093/jxb/eru004 24520019 

  28. Drake R. John I. Farrell A. Cooper W. Schuch W. Grierson D. ( 1996 ). Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence . Plant Mol. Biol. 30 , 755 – 767 . 10.1007/BF00019009 8624407 

  29. El-Mounadi K. Morales-Floriano M.L. Garcia-Ruiz H. ( 2020 ). Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9 . Front. Plant Sci. 11 : 56 . 10.3389/fpls.2020.00056 32117392 

  30. El-Shershaby A. Ullrich S. Simm S. Scharf K.-D. Schleiff E. Fragkostefanakis S. ( 2019 ). Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties . Gene 714 : 143985 . 10.1016/j.gene.2019.143985 31330236 

  31. Enyedi A.J. Pell E.J. ( 1992 ). Comparison of the rbcL gene sequence of two potato cultivars with differential sensitivity to ozone . Plant Physiol. 99 : 356 . 10.1104/pp.99.1.356 16668878 

  32. Erickson A. Markhart A. ( 2002 ). Flower developmental stage and organ sensitivity of bell pepper ( Capsicum annuum L .) to elevated temperature . Plant Cell Environ. 25 , 123 – 130 . 10.1046/j.0016-8025.2001.00807.x 

  33. Ezura H. ( 2016 ). Toward in silico design and engineering of solanaceae and cucurbitaceae crops, in Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops . ( New York, NY : Springer ), 251 – 258 . 

  34. Firon N. Shaked R. Peet M. Pharr D. Zamski E. Rosenfeld K. . ( 2006 ). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions . Sci. Hortic. 109 , 212 – 217 . 10.1016/j.scienta.2006.03.007 

  35. Fletcher J.C. ( 2018 ). The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization . Plants 7 : 87 . 10.3390/plants7040087 30347700 

  36. Fragkostefanakis S. Mesihovic A. Simm S. Paupière M.J. Hu Y. Paul P. . ( 2016 ). HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues . Plant Physiol. 170 , 2461 – 2477 . 10.1104/pp.15.01913 26917685 

  37. Frank G. Pressman E. Ophir R. Althan L. Shaked R. Freedman M. . ( 2009 ). Transcriptional profiling of maturing tomato ( Solanum lycopersicum L .) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response . J. Exp. Bot. 60 , 3891 – 3908 . 10.1093/jxb/erp234 19628571 

  38. Fridman E. Carrari F. Liu Y.-S. Fernie A.R. Zamir D. ( 2004 ). Zooming in on a quantitative trait for tomato yield using interspecific introgressions . Science 305 , 1786 – 1789 . 10.1126/science.1101666 15375271 

  39. Fridman E. Pleban T. Zamir D. ( 2000 ). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene . PNAS. 97 , 4718 – 4723 . 10.1073/pnas.97.9.4718 10781077 

  40. Gerszberg A. Hnatuszko-Konka K. Kowalczyk T. Kononowicz A.K. ( 2015 ). Tomato (Solanum lycopersicum L.) in the service of biotechnology . Plant Cell, Tissue and Organ Cult. 120 , 881 – 902 . 10.1007/s11240-014-0664-4 

  41. Gimenez E. Castañeda L. Pineda B. Pan I.L. Moreno V. Angosto T. . ( 2016 ). TOMATO AGAMOUS1 and A RLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development . Plant Mol. Biol. 91 , 513 – 531 . 10.1007/s11103-016-0485-4 27125648 

  42. Giorno F. Wolters-Arts M. Mariani C. Rieu I. ( 2013 ). Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development . Plants 2 , 489 – 506 . 10.3390/plants2030489 27137389 

  43. Gonzalez N. Gévaudant F. Hernould M. Chevalier C. Mouras A. ( 2007 ). The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit . Plant J. 51 , 642 – 655 . 10.1111/j.1365-313X.2007.03167.x 17587306 

  44. Gramazio P. Takayama M. Ezura H. ( 2020 ). Challenges and prospects of new plant breeding techniques for GABA improvement in crops: tomato as an example . Front. Plant Sci. 11 : 980 . 10.3389/fpls.2020.577980 32754172 

  45. Guo M. Zhang Z. Li S. Lian Q. Fu P. He Y. . ( 2021 ). Genomic analyses of diverse wild and cultivated accessions provide insights into the evolutionary history of jujube . Plant Biotechnol. J. 19 , 517 – 531 . 10.1111/pbi.13480 32946650 

  46. Hackel A. Schauer N. Carrari F. Fernie A.R. Grimm B. Kühn C. ( 2006 ). Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways . Plant J. 45 , 180 – 192 . 10.1111/j.1365-313X.2005.02572.x 16367963 

  47. Hasanuzzaman M. Nahar K. Alam M. Roychowdhury R. Fujita M. ( 2013 ). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants . Int. J. Mol. Sci. 14 , 9643 – 9684 . 10.3390/ijms14059643 23644891 

  48. Hashimoto M. Negi J. Young J. Israelsson M. Schroeder J.I. Iba K. ( 2006 ). Arabidopsis HT1 kinase controls stomatal movements in response to CO 2 . Nat. Cell Biol. 8 , 391 – 397 . 10.1038/ncb1387 16518390 

  49. Hendelman A. Stav R. Zemach H. Arazi T. ( 2013 ). The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis . J. Exp. Bot. 64 , 5497 – 5507 . 10.1093/jxb/ert324 24085581 

  50. Higashi Y. Ohama N. Ishikawa T. Katori T. Shimura A. Kusakabe K. . ( 2013 ). HsfA1d, a protein identified via FOX hunting using Thellungiella salsuginea cDNAs improves heat tolerance by regulating heat-stress-responsive gene expression . Mol. Plant 6 , 411 – 422 . 10.1093/mp/sst024 23393165 

  51. Ho L.C. ( 1996 ). The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato . J. Exp. Bot. 47 , 1239 – 1243 . 10.1093/jxb/47.Special_Issue.1239 21245255 

  52. Horváth E. Szalai G. Janda T. ( 2007 ). Induction of abiotic stress tolerance by salicylic acid signaling . J. Plant Growth Regul. 26 , 290 – 300 . 10.1007/s00344-007-9017-4 21828106 

  53. Hu X. Jiang M. Zhang A. Lu J. ( 2005 ). Abscisic acid-induced apoplastic H 2 O 2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves . Planta 223 , 57 – 68 . 10.1007/s00425-005-0068-0 16049674 

  54. Huang Y.-X. Goto Y. Nonaka S. Fukuda N. Ezura H. Matsukura C. ( 2015 ). Overexpression of the phosphoenolpyruvate carboxykinase gene ( SlPEPCK ) promotes soluble sugar accumulation in fruit and post-germination growth of tomato ( Solanum lycopersicum L .) . Plant Biotechnol. 32 , 281 – 289 . 10.5511/plantbiotechnology.15.1019a 

  55. Ikeda M. Mitsuda N. Ohme-Takagi M. ( 2011 ). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance . Plant Physiol. 157 , 1243 – 1254 . 10.1104/pp.111.179036 21908690 

  56. Ilík P. Špundová M. Šicner M. Melkovičová H. Kučerová Z. Krchnák P. . ( 2018 ). Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating . New Phytol. 218 , 1278 – 1287 . 10.1111/nph.15097 29573424 

  57. Jahan M.S. Wang Y. Shu S. Zhong M. Chen Z. Wu J. . ( 2019 ). Exogenous salicylic acid increases the heat tolerance in Tomato ( Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species . Sci. Hortic. 247 , 421 – 429 . 10.1016/j.scienta.2018.12.047 

  58. Ji G. Xue H. Seneweera S. Ping L. Zong Y.-,z. Qi D. . ( 2015 ). Leaf photosynthesis and yield components of mung bean under fully open-air elevated [CO 2 ] . J. Integr. Agric. 14 , 977 – 983 . 10.1016/S2095-3119(14)60941-2 

  59. Jofuku K.D. Den Boer B. Van Montagu M. Okamuro J.K. ( 1994 ). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 . Plant Cell 6 , 1211 – 1225 . 10.1105/tpc.6.9.1211 7919989 

  60. Jones D.S. John A. VanDerMolen K.R. Nimchuk Z.L. ( 2021 ). CLAVATA signaling ensures reproductive development in plants across thermal environments . Curr. Biol. 31 , 220 – 227 . 10.1016/j.cub.2020.10.008 33157018 

  61. Jones P.D. New M. Parker D.E. Martin S. Rigor I.G. ( 1999 ). Surface air temperature and its changes over the past 150 years . Rev. Geophys. 37 , 173 – 199 . 10.1029/1999RG900002 28528907 

  62. José Ripoll J. Bailey L.J. Mai Q.A. Wu S.L. Hon C.T. Chapman E.J. . ( 2015 ). microRNA regulation of fruit growth . Nat Plants 1 : 15036 . 10.1038/nplants.2015.36 27247036 

  63. Kanayama Y. ( 2017 ). Sugar metabolism and fruit development in the tomato . Hort. J. OKD-IR01. 10.2503/hortj.OKD-IR01 33193736 

  64. Keller M. Simm S. ( 2018 ). The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen . BMC Genom. 19 , 1 – 20 . 10.1186/s12864-018-4824-5 29884134 

  65. Klap C. Yeshayahou E. Bolger A.M. Arazi T. Gupta S.K. Shabtai S. . ( 2017 ). Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function . Plant Biotechnol. J. 15 , 634 – 647 . 10.1111/pbi.12662 27862876 

  66. Kong F. Deng Y. Wang G. Wang J. Liang X. Meng Q. ( 2014 ). LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes . J. Integr. Plant Biol. 56 , 63 – 74 . 10.1111/jipb.12119 24148796 

  67. Kotak S. Larkindale J. Lee U. von Koskull-Döring P. Vierling E. Scharf K.-D. ( 2007 ). Complexity of the heat stress response in plants . Curr. Opin. Plant Biol. 10 , 310 – 316 . 10.1016/j.pbi.2007.04.011 17482504 

  68. Kramer E.M. Dorit R.L. Irish V.F. ( 1998 ). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 a nd PISTILLATA MADS-box gene lineages . Genetics 149 , 765 – 783 . 10.1093/genetics/149.2.765 9611190 

  69. Kugblenu Y.O. Oppong Danso E. Ofori K. Andersen M.N. Abenney-Mickson S. Sabi E.B. . ( 2013 ). Screening tomato genotypes for adaptation to high temperature in West Africa . Acta Agric. Scand. B Soil Plant Sci. 63 , 516 – 522 . 10.1080/09064710.2013.813062 

  70. Kumar S. Kaur R. Kaur N. Bhandhari K. Kaushal N. Gupta K. . ( 2011 ). Heat-stress induced inhibition in growth and chlorosis in mungbean ( Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress . Acta Physiol. Plant. 33 , 2091 – 2101 . 10.1007/s11738-011-0748-2 

  71. Kumar S. Rymarquis L.A. Ezura H. Nekrasov V. ( 2021 ). Editorial: CRISPR-Cas in agriculture: opportunities and challenges . Front. Plant Sci. 12 , 672329 – 672329 . 10.3389/fpls.2021.672329 33841487 

  72. Kumar V. Dwivedi P. Kumar P. Singh B.N. Pandey D.K. Kumar V. . ( 2021 ). Mitigation of heat stress responses in crops using nitrate primed seeds . S. Afr. J. Bot. 140 , 25 – 36 . 10.1016/j.sajb.2021.03.024 

  73. Lahr E.C. Schade G.W. Crossett C.C. Watson M.R. ( 2015 ). Photosynthesis and isoprene emission from trees along an urban–rural gradient in Texas . Global Change Biol. 21 , 4221 – 4236 . 10.1111/gcb.13010 26111255 

  74. Lee J. Nonaka S. Takayama M. Ezura H. ( 2018 ). Utilization of a genome-edited tomato (Solanum lycopersicum) with high gamma aminobutyric acid content in hybrid breeding . J. Agric. Food Chem. 66 , 963 – 971 . 10.1021/acs.jafc.7b05171 29314836 

  75. Lin Y.-X. Jiang H.-Y. Chu Z.-X. Tang X.-L. Zhu S.-W. Cheng B.-J. ( 2011 ). Genome-wide identification, classification and analysis of heat shock transcription factor family in maize . BMC Genomics 12 , 1 – 14 . 10.1186/1471-2164-12-76 21272351 

  76. Liu H.C. Liao H.T. Charng Y.Y. ( 2011 ). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis . Plant Cell Environ. 34 , 738 – 751 . 10.1111/j.1365-3040.2011.02278.x 21241330 

  77. Mahesh U. Mamidala P. Rapolu S. Aragao F.J. Souza M. Rao P. . ( 2013 ). Constitutive overexpression of small HSP24. 4 gene in transgenic tomato conferring tolerance to high-temperature stress . Mol. Breed. 32 , 687 – 697 . 10.1007/s11032-013-9901-5 

  78. Mathieu-Rivet E. Gévaudant F. Sicard A. Salar S. Do P.T. Mouras A. . ( 2010 ). Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato . Plant J. 62 , 727 – 741 . 10.1111/j.1365-313X.2010.04198.x 20230486 

  79. Matsukura C. Aoki K. Fukuda N. Mizoguchi T. Asamizu E. Saito T. . ( 2008 ). Comprehensive resources for tomato functional genomics based on the miniature model tomato Micro-Tom . Curr. Genomics 9 , 436 – 443 . 10.2174/138920208786241225 19506732 

  80. Medlyn B.E. Barton C. Broadmeadow M. Ceulemans R. De Angelis P. Forstreuter M. . ( 2001 ). Stomatal conductance of forest species after long-term exposure to elevated CO 2 concentration: a synthesis . New Phytol. 149 , 247 – 264 . 10.1046/j.1469-8137.2001.00028.x 33874628 

  81. Meng X. Wang J.-R. Wang G.-D. Liang X.-Q. Li X.-D. Meng Q.-W. ( 2015 ). An R2R3-MYB gene, LeAN2 , positively regulated the thermo-tolerance in transgenic tomato . J. Plant Physiol. 175 , 1 – 8 . 10.1016/j.jplph.2014.09.018 25437348 

  82. Mishra S.K. Tripp J. Winkelhaus S. Tschiersch B. Theres K. Nover L. . ( 2002 ). In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato . Genes Dev. 16 , 1555 – 1567 . 10.1101/gad.228802 12080093 

  83. Miura K. Tada Y. ( 2014 ). Regulation of water, salinity, and cold stress responses by salicylic acid . Front. Plant Sci. 5 : 4 . 10.3389/fpls.2014.00004 24478784 

  84. Monterroso V.A. Wien H.C. ( 1990 ). Flower and pod abscission due to heat stress in beans . J. Am. Soc. Hort. Sci. 115 , 631 – 634 . 10.21273/JASHS.115.4.631 

  85. Mukhtar T. Smith D. Sultan T. Seleiman M.F. Alsadon A.A. Ali S. . ( 2020 ). Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling . Sustainability 12 : 2159 . 10.3390/su12062159 

  86. Müller F. Xu J. Kristensen L. Wolters-Arts M. de Groot P.F. Jansma S.Y. . ( 2016 ). High-temperature-induced defects in tomato ( Solanum lycopersicum ) anther and pollen development are associated with reduced expression of B-class floral patterning genes . PLoS ONE 11 : e0167614 . 10.1371/journal.pone.0167614 27936079 

  87. Murai K. ( 2013 ). Homeotic genes and the ABCDE model for floral organ formation in wheat . Plants 2 , 379 – 395 . 10.3390/plants2030379 27137382 

  88. Nautiyal P.C. Shono M. Egawa Y. ( 2005 ). Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line . Sci. Hortic. 105 , 393 – 409 . 10.1016/j.scienta.2005.02.001 

  89. Negi J. Matsuda O. Nagasawa T. Oba Y. Takahashi H. Kawai-Yamada M. . ( 2008 ). CO 2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells . Nature 452 , 483 – 486 . 10.1038/nature06720 18305482 

  90. Neill S. Barros R. Bright J. Desikan R. Hancock J. Harrison J. . ( 2008 ). Nitric oxide, stomatal closure, and abiotic stress . J. Exp. Bot. 59 , 165 – 176 . 10.1093/jxb/erm293 18332225 

  91. Neta-Sharir I. Isaacson T. Lurie S. Weiss D. ( 2005 ). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation . Plant Cell 17 , 1829 – 1838 . 10.1105/tpc.105.031914 15879560 

  92. Nonaka S. Arai C. Takayama M. Matsukura C. Ezura H. ( 2017 ). Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis . Sci. Rep. 7 , 1 – 14 . 10.1038/s41598-017-06400-y 28127051 

  93. Ohama N. Kusakabe K. Mizoi J. Zhao H. Kidokoro S. Koizumi S. . ( 2016 ). The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression . Plant Cell 28 , 181 – 201 . 10.1105/tpc.15.00435 26715648 

  94. Ohama N. Sato H. Shinozaki K. Yamaguchi-Shinozaki K. ( 2017 ). Transcriptional regulatory network of plant heat stress response . Trends Plant Sci. 22 , 53 – 65 . 10.1016/j.tplants.2016.08.015 27666516 

  95. Pan C. Yang D. Zhao X. Jiao C. Yan Y. Lamin-Samu A.T. . ( 2019 ). Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway . Plant, Cell Environ. 42 , 1205 – 1221 . 10.1111/pce.13444 30203844 

  96. Pan C. Ye L. Zheng Y. Wang Y. Yang D. Liu X. . ( 2017 ). Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato . BMC Genomics 18 , 1 – 16 . 10.1186/s12864-017-4238-9 28049423 

  97. Paupière M.J. van Haperen P. Rieu I. Visser R.G. Tikunov Y.M. Bovy A.G. ( 2017 ). Screening for pollen tolerance to high temperatures in tomato . Euphytica 213 , 1 – 8 . 10.1007/s10681-017-1927-z 

  98. Peet M. Sato S. Gardner R. ( 1998 ). Comparing heat stress effects on male-fertile and male-sterile tomatoes . Plant Cell Environ. 21 , 225 – 231 . 10.1046/j.1365-3040.1998.00281.x 

  99. Pham D. Hoshikawa K. Fujita S. Fukumoto S. Hirai T. Shinozaki Y. . ( 2020 ). A tomato heat-tolerant mutant shows improved pollen fertility and fruit-setting under long-term ambient high temperature . Environ. Exp. Bot. 178 : 104150 . 10.1016/j.envexpbot.2020.104150 

  100. Piramila B. Prabha A. Nandagopalan V. Stanley A. ( 2012 ). Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram . Int. J. Pharm. Phytopharmacol. Res 1 , 194 – 202 . 

  101. Potters G. Pasternak T.P. Guisez Y. Jansen M.A. ( 2009 ). Different stresses, similar morphogenic responses: integrating a plethora of pathways . Plant Cell Environ. 32 , 158 – 169 . 10.1111/j.1365-3040.2008.01908.x 19021890 

  102. Poudyal D. Rosenqvist E. Ottosen C.-O. ( 2018 ). Phenotyping from lab to field–tomato lines screened for heat stress using Fv/Fm maintain high fruit yield during thermal stress in the field . Funct. Plant Biol. 46 , 44 – 55 . 10.1071/FP17317 30939257 

  103. Prasad P.V. Craufurd P. Summerfield R. ( 1999 ). Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress . Ann. Bot. 84 , 381 – 386 . 10.1006/anbo.1999.0926 

  104. Qu A.-L. Ding Y.-F. Jiang Q. Zhu C. ( 2013 ). Molecular mechanisms of the plant heat stress response . Biochem. Biophys. Res. Commun. 432 , 203 – 207 . 10.1016/j.bbrc.2013.01.104 23395681 

  105. Quinet M. Angosto T. Yuste-Lisbona F.J. Blanchard-Gros R. Bigot S. Martinez J.-P. . ( 2019 ). Tomato fruit development and metabolism . Front. Plant Sci. 10 , 1554 . 10.3389/fpls.2019.01554 31850035 

  106. Radin J.W. Lu Z. Percy R.G. Zeiger E. ( 1994 ). Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation . PNAS. 91 , 7217 – 7221 . 10.1073/pnas.91.15.7217 11607487 

  107. Raja M.M. Vijayalakshmi G. Naik M.L. Basha P.O. Sergeant K. Hausman J.F. . ( 2019 ). Pollen development and function under heat stress: from effects to responses . Acta Physiol. Plant. 41 , 1 – 20 . 10.1007/s11738-019-2835-8 

  108. Rao S. Das J.R. Mathur S. ( 2021 ). Exploring the master regulator heat stress transcription factor HSFA1a-mediated transcriptional cascade of HSFs in the heat stress response of tomato . J. Plant Biochem. Biotechnol. 10.1007/s13562-021-00696-8 

  109. Reynolds M.P. Pierre C.S. Saad A.S. Vargas M. Condon A.G. ( 2007 ). Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress . Crop Sci. 47 , S-172 – S-189 . 10.2135/cropsci2007.10.0022IPBS 

  110. Reynolds-Henne C.E. Langenegger A. Mani J. Schenk N. Zumsteg A. Feller U. ( 2010 ). Interactions between temperature, drought and stomatal opening in legumes . Environ. Exp. Bot. 68 , 37 – 43 . 10.1016/j.envexpbot.2009.11.002 

  111. Rieu I. Twell D. Firon N. ( 2017 ). Pollen development at high temperature: from acclimation to collapse . Plant Physiol. 173 , 1967 – 1976 . 10.1104/pp.16.01644 28246296 

  112. Rijpkema A.S. Vandenbussche M. Koes R. Heijmans K. Gerats T. ( 2010 ). Variations on a theme: changes in the floral ABCs in angiosperms . Semin. Cell Dev. Biol. 10 , 100 – 107 . 10.1016/j.semcdb.2009.11.002 19932760 

  113. Rodríguez G.R. Muños S. Anderson C. Sim S.-C. Michel A. Causse M. . ( 2011 ). Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity . Plant Physiol. 156 , 275 – 285 . 10.1104/pp.110.167577 21441384 

  114. Rodríguez-Leal D. Lemmon Z.H. Man J. Bartlett M.E. Lippman Z.B. ( 2017 ). Engineering quantitative trait variation for crop improvement by genome editing . Cell 171 , 470 – 480 . 10.1016/j.cell.2017.08.030 28919077 

  115. Saeed A. Hayat K. Khan A. Iqbal S. ( 2007 ). Heat tolerance studies in tomato ( Lycopersicon esculentum Mill.) . Int. J. Agric. Biol. 9 , 649 – 652 . 

  116. Saito T. Ariizumi T. Okabe Y. Asamizu E. Hiwasa-Tanase K. Fukuda N. . ( 2011 ). TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections . Plant Cell Physiol. 52 , 283 – 296 . 10.1093/pcp/pcr004 21258066 

  117. Sakata T. Higashitani A. ( 2008 ). Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury . Int. J. Plant Dev. Biol. 2 : 4 . 

  118. Salava H. Thula S. Mohan V. Kumar R. Maghuly F. ( 2021 ). Application of genome editing in tomato breeding: mechanisms, advances, and prospects . Int. J. Mol. Sci. 22 : 682 . 10.3390/ijms22020682 33445555 

  119. Sato S. Kamiyama M. Iwata T. Makita N. Furukawa H. Ikeda H. ( 2006 ). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development . Ann. Bot. 97 , 731 – 738 . 10.1093/aob/mcl037 16497700 

  120. Sato S. Peet M. Thomas J. ( 2000 ). Physiological factors limit fruit set of tomato ( Lycopersicon esculentum Mill.) under chronic, mild heat stress . Plant Cell Environ. 23 , 719 – 726 . 10.1046/j.1365-3040.2000.00589.x 

  121. Sato S. Peet M.M. Thomas J.F. ( 2002 ). Determining critical pre-and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures . J. Exp. Bot. 53 , 1187 – 1195 . 10.1093/jexbot/53.371.1187 11971929 

  122. Scharf K.-D. Berberich T. Ebersberger I. Nover L. ( 2012 ). The plant heat stress transcription factor (Hsf) family: structure, function and evolution . Biochim. Biophys. Acta Gene Regul. Mech. 1819 , 104 – 119 . 10.1016/j.bbagrm.2011.10.002 29247802 

  123. Schauer S.E. Schlüter P.M. Baskar R. Gheyselinck J. Bolaños A. Curtis M.D. . ( 2009 ). Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis . Plant J. 59 , 987 – 1000 . 10.1111/j.1365-313X.2009.03928.x 19473325 

  124. Selahle M. K. Sivakumar D. Soundy P. ( 2014 ). Effect of photo-selective nettings on post-harvest quality and bioactive compounds in selected tomato cultivars . J. Sci. Food Agri. 94 , 2187 – 2195 . 10.1002/jsfa.6536 24338287 

  125. Shanmugam S. Kjaer K.H. Ottosen C.O. Rosenqvist E. Kumari Sharma D. Wollenweber B. ( 2013 ). The alleviating effect of elevated CO 2 on heat stress susceptibility of two wheat ( Triticum aestivum L.) Cultivars . J. Agron. Crop Sci. 199 , 340 – 350 . 10.1111/jac.12023 

  126. Sharkey T.D. Zhang R. ( 2010 ). High temperature effects on electron and proton circuits of photosynthesis . J. Integr. Plant Biol. 52 , 712 – 722 . 10.1111/j.1744-7909.2010.00975.x 20666927 

  127. Sharma B. Yant L. Hodges S.A. Kramer E.M. ( 2014 ). Understanding the development and evolution of novel floral form in Aquilegia . Curr. Opin. Plant Biol. 17 , 22 – 27 . 10.1016/j.pbi.2013.10.006 24507490 

  128. Shi H. Jiang C. Ye T. Tan D.-X. Reiter R.J. Zhang H. . ( 2015 ). Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [ Cynodon dactylon (L) . Pers.] by exogenous melatonin. J. Exp. Bot. 66 , 681 – 694 . 10.1093/jxb/eru373 25225478 

  129. Shikata M. Hoshikawa K. Ariizumi T. Fukuda N. Yamazaki Y. Ezura H. ( 2016 ). TOMATOMA update: Phenotypic and metabolite information in the Micro-Tom mutant resource . Plant Cell Physiol. 57 , e11 – e11 . 10.1093/pcp/pcv194 26719120 

  130. Shinozaki Y. Beauvoit B.P. Takahara M. Hao S. Ezura K. Andrieu M.-H. . ( 2020 ). Fruit setting rewires central metabolism via gibberellin cascades . PNAS. 117 , 23970 – 23981 . 10.1073/pnas.2011859117 32883877 

  131. Shinozaki Y. Ezura K. Hu J. Okabe Y. Bénard C. Prodhomme D. . ( 2018 ). Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato . Sci. Rep. 8 , 1 – 15 . 10.1038/s41598-018-30502-w 29311619 

  132. Smaczniak C. Immink R.G. Angenent G.C. Kaufmann K. ( 2012 ). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies . Development 139 , 3081 – 3098 . 10.1242/dev.074674 22872082 

  133. Smertenko A. DRÁBER P. Viklick,ý V. Opatrn,ý Z. ( 1997 ). Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells . Plant, Cell Environ. 20 , 1534 – 1542 . 10.1046/j.1365-3040.1997.d01-44.x 

  134. Somssich M. Je B.I. Simon R. Jackson D. ( 2016 ). CLAVATA-WUSCHEL signaling in the shoot meristem . Development 143 , 3238 – 3248 . 10.1242/dev.133645 27624829 

  135. Stocker T. Qin D. Plattner G. Tignor M. Allen S. Boschung J. . ( 2013 ). IPCC, 2013: summary for policymakers in climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change . Camb. Univ. Press Camb. UKNY NY USA . 

  136. Takeoka Y. Hiroi K. Kitano H. Wada T. ( 1991 ). Pistil hyperplasia in rice spikelets as affected by heat stress . Sex. Plant Reprod. 4 , 39 – 43 . 10.1007/BF00194570 

  137. Thirumalaikumar V.P. Devkar V. Mehterov N. Ali S. Ozgur R. Turkan I. . ( 2018 ). NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato . Plant Biotechnol. J. 16 , 354 – 366 . 10.1111/pbi.12776 28640975 

  138. Todorov D.T. Karanov E.N. Smith A.R. Hall M.A. ( 2003 ). Chlorophyllase activity and chlorophyll content in wild and mutant plants of Arabidopsis thaliana . Biol. Plant. 46 , 125 – 127 . 10.1023/A:1022355525907 28390898 

  139. Toh S. Imamura A. Watanabe A. Nakabayashi K. Okamoto M. Jikumaru Y. . ( 2008 ). High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds . Plant Physiol. 146 , 1368 – 1385 . 10.1104/pp.107.113738 18162586 

  140. Valladares F. Pearcy R. ( 1997 ). Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia . Plant Cell Environ. 20 , 25 – 36 . 10.1046/j.1365-3040.1997.d01-8.x 

  141. Vara Prasad P.V. Craufurd P.Q. Summerfield R.J. Wheeler T.R. ( 2000 ). Effects of short episodes of heat stress on flower production and fruit-set of groundnut ( Arachis hypogaea L.) . J. Exp. Bot. 51 , 777 – 784 . 10.1093/jxb/51.345.777 10938870 

  142. Vollenweider P. Günthardt-Goerg M.S. ( 2005 ). Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage . Environ. Pollut. 137 , 455 – 465 . 10.1016/j.envpol.2005.01.032 16005758 

  143. von Caemmerer S. Evans J.R. ( 2015 ). Temperature responses of mesophyll conductance differ greatly between species . Plant Cell Environ. 38 , 629 – 637 . 10.1111/pce.12449 25224884 

  144. Wahid A. Gelani S. Ashraf M. Foolad M.R. ( 2007 ). Heat tolerance in plants: an overview . Environ. Exp. Bot. 61 , 199 – 223 . 10.1016/j.envexpbot.2007.05.011 

  145. Wahid A. Shabbir A. ( 2005 ). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine . Plant Growth Regul. 46 , 133 – 141 . 10.1007/s10725-005-8379-5 

  146. Wang G. Kong F. Zhang S. Meng X. Wang Y. Meng Q. ( 2015 ). A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress . J. Exp. Bot. 66 , 3027 – 3040 . 10.1093/jxb/erv102 25801077 

  147. Wang W. Vinocur B. Shoseyov O. Altman A. ( 2004 ). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response . Trends Plant Sci. 9 , 244 – 252 . 10.1016/j.tplants.2004.03.006 15130550 

  148. Warrag M. Hall A. ( 1984 ). Reproductive responses of cowpea ( Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperature . Field Crops Res. 8 , 17 – 33 . 10.1016/0378-4290(84)90049-2 

  149. Watanabe S. Mizoguchi T. Aoki K. Kubo Y. Mori H. Imanishi S. . ( 2007 ). Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens . Plant Biotechnol. 24 , 33 – 38 . 10.5511/plantbiotechnology.24.33 

  150. Weise A. Barker L. Kühn C. Lalonde S. Buschmann H. Frommer W.B. . ( 2000 ). A New subfamily of sucrose transporters, sut4, with low affinity/high capacity localized in enucleate sieve elements of plants . Plant Cell 12 , 1345 – 1355 . 10.1105/tpc.12.8.1345 10948254 

  151. Wellmer F. Graciet E. Riechmann J.L. ( 2014 ). Specification of floral organs in Arabidopsis . J. Exp. Bot. 65 , 1 – 9 . 10.1093/jxb/ert385 24277279 

  152. Weston D.J. Bauerle W.L. ( 2007 ). Inhibition and acclimation of C 3 photosynthesis to moderate heat: a perspective from thermally contrasting genotypes of Acer rubrum (red maple) . Tree Physiol. 27 , 1083 – 1092 . 10.1093/treephys/27.8.1083 17472935 

  153. Woo H.R. Kim H.J. Nam H.G. Lim P.O. ( 2013 ). Plant leaf senescence and death–regulation by multiple layers of control and implications for aging in general . J. Cell Sci. 126 , 4823 – 4833 . 10.1242/jcs.109116 24144694 

  154. Xia X. Cheng X. Li R. Yao J. Li Z. Cheng Y. ( 2021 ). Advances in application of genome editing in tomato and recent development of genome editing technology . Theor. Appl. Genet. 21 , 1 – 21 . 10.1007/s00122-021-03874-3 34076729 

  155. Xiao H.-J. Yin Y.-X. Chai W.-G. Gong Z.-H. ( 2014 ). Silencing of the CaCP gene delays salt-and osmotic-induced leaf senescence in Capsicum annuum L . Int. J. Mol. Sci. 15 , 8316 – 8334 . 10.3390/ijms15058316 24823878 

  156. Xu C. Liberatore K.L. MacAlister C.A. Huang Z. Chu Y.-H. Jiang K. . ( 2015 ). A cascade of arabinosyltransferases controls shoot meristem size in tomato . Nat. Genet. 47 , 784 – 792 . 10.1038/ng.3309 26005869 

  157. Xu H.H. Tabita F.R. ( 1996 ). Ribulose-1, 5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms . Appl. Environ. Microbiol. 62 , 1913 – 1921 . 10.1128/aem.62.6.1913-1921.1996 8787390 

  158. Xu J. Wolters-Arts M. Mariani C. Huber H. Rieu I. ( 2017 ). Heat stress affects vegetative and reproductive performance and trait correlations in tomato ( Solanum lycopersicum ) . Euphytica 213 , 1 – 12 . 10.1007/s10681-017-1949-6 

  159. Yamamoto T. Kashojiya S. Kamimura S. Kameyama T. Ariizumi T. Ezura H. . ( 2018 ). Application and development of genome editing technologies to the Solanaceae plants . Plant Physiol. Biochem. 131 , 37 – 46 . 10.1016/j.plaphy.2018.02.019 29523384 

  160. Yan W.G. Li Y. Agrama H.A. Luo D. Gao F. Lu X. . ( 2009 ). Association mapping of stigma and spikelet characteristics in rice ( Oryza sativa L.) . Mol. Breed. 24 , 277 – 292 . 10.1007/s11032-009-9290-y 20234878 

  161. Yao J.-L. Tomes S. Xu J. Gleave A.P. ( 2016 ). How microRNA172 affects fruit growth in different species is dependent on fruit type . Plant Signal Behav. 11 , 417 – 427 . 10.1080/15592324.2016.1156833 26926448 

  162. Yoshida T. Ohama N. Nakajima J. Kidokoro S. Mizoi J. Nakashima K. . ( 2011 ). Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression . Mol. Genet. Genomics 286 , 321 – 332 . 10.1007/s00438-011-0647-7 21931939 

  163. Yu W. Wang L. Zhao R. Sheng J. Zhang S. Li R. . ( 2019 ). Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants . BMC Plant Biol. 19 , 1 – 13 . 10.1186/s12870-019-1939-z 30606102 

  164. Yu X. Chen G. Guo X. Lu Y. Zhang J. Hu J. . ( 2017 ). Silencing SlAGL6 , a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal . Plant Cell Rep. 36 , 959 – 969 . 10.1007/s00299-017-2129-9 28352968 

  165. Yuste-Lisbona F.J. Fernández-Lozano A. Pineda B. Bretones S. Ortíz-Atienza A. García-Sogo B. . ( 2020 ). ENO regulates tomato fruit size through the floral meristem development network . PNAS. 117 , 8187 – 8195 . 10.1073/pnas.1913688117 32179669 

  166. Zhang T. Li Z. Li D. Li C. Wei D. Li S. . ( 2020 ). Comparative effects of glycinebetaine on the thermotolerance in codA- and BADH- transgenic tomato plants under high temperature stress . Plant Cell Rep. 39 , 1525 – 1538 . 10.1007/s00299-020-02581-5 32860517 

  167. Zhang Y. Mian M. Bouton J. ( 2006 ). Recent molecular and genomic studies on stress tolerance of forage and turf grasses . Crop Sci. 46 , 497 – 511 . 10.2135/cropsci2004.0572 

  168. Zhao X. Muhammad N. Zhao Z. Yin K. Liu Z. Wang L. . ( 2021 ). Molecular regulation of fruit size in horticultural plants: A review . Sci. Hortic. 288 : 110353 . 10.1016/j.scienta.2021.110353 

  169. Zhong L. Zhou W. Wang H. Ding S. Lu Q. Wen X. . ( 2013 ). Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress . Plant Cell 25 , 2925 – 2943 . 10.1105/tpc.113.111229 23922206 

  170. Zhou R. Kjaer K. Rosenqvist E. Yu X. Wu Z. Ottosen C.O. ( 2017 ). Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance . J. Agron. Crop Sci. 203 , 68 – 80 . 10.1111/jac.12166 

  171. Zhou R. Kong L. Yu X. Ottosen C.-O. Zhao T. Jiang F. . ( 2019 ). Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress . Acta Physiol. Plant. 41 , 20 . 10.1007/s11738-019-2805-1 

  172. Zhou R. Yu X. Kjær K.H. Rosenqvist E. Ottosen C.-O. Wu Z. ( 2015 ). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance . Environ. Exp. Bot. 118 , 1 – 11 . 10.1016/j.envexpbot.2015.05.006 

  173. Zhu J.-K. ( 2016 ). Abiotic stress signaling and responses in plants . Cell 167 , 313 – 324 . 10.1016/j.cell.2016.08.029 27716505 

  174. Zinn K.E. Tunc-Ozdemir M. Harper J.F. ( 2010 ). Temperature stress and plant sexual reproduction: uncovering the weakest links . J. Exp. Bot. 61 , 1959 – 1968 . 10.1093/jxb/erq053 20351019 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로