$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Scalable Synthesis of Pore-Rich Si/CC Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes

ACS applied materials & interfaces, v.14 no.8, 2022년, pp.10308 - 10318  

An, Weili (BTR New Material Group Co., Ltd. , Shenzhen 518107 , P. R. China) ,  He, Peng (BTR New Material Group Co., Ltd. , Shenzhen 518107 , P. R. China) ,  Che, Zongzhou (BTR New Material Group Co., Ltd. , Shenzhen 518107 , P. R. China) ,  Xiao, Chengmao (BTR New Material Group Co., Ltd. , Shenzhen 518107 , P. R. China) ,  Guo, Eming (BTR New Material Group Co., Ltd. , Shenzhen 518107 , P. R. China) ,  Pang, Chunlei (BTR New Material Group Co., Ltd. , Shenzhen 518107 , P. R. China) ,  He, Xueqin (BTR New Material Group Co., Ltd. , Shenzhen 518107 , P. R. China) ,  Ren, Jianguo (State Key Laboratory of Silicon Materials and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China) ,  Yuan, Guohui (State Key Laboratory of Silicon Materials and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027) ,  Du, Ning ,  Yang, Deren ,  Peng, Dong-Liang ,  Zhang, Qiaobao

Abstract AI-Helper 아이콘AI-Helper

Silicon/carbon (Si/C) composites have rightfully earned the attention as anode candidates for high-energy-density lithium-ion batteries (LIBs) owing to their advantageous capacity and superior cycling stability, yet their practical application remains a significant challenge. In this study, we repor...

주제어

참고문헌 (49)

  1. Kang, Byoungwoo, Ceder, Gerbrand. Battery materials for ultrafast charging and discharging. Nature, vol.458, no.7235, 190-193.

  2. Wu, Hui, Yu, Guihua, Pan, Lijia, Liu, Nian, McDowell, Matthew T., Bao, Zhenan, Cui, Yi. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature communications, vol.4, 1943-.

  3. An, Weili, Gao, Biao, Mei, Shixiong, Xiang, Ben, Fu, Jijiang, Wang, Lei, Zhang, Qiaobao, Chu, Paul K., Huo, Kaifu. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature communications, vol.10, no.1, 1447-.

  4. Xiang, Ben, An, Wei-Li, Fu, Ji-Jiang, Mei, Shi-Xiong, Guo, Si-Guang, Zhang, Xu-Ming, Gao, Biao, Chu, Paul K.. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare metals : a Chinese journal of science, technology & applications in the field of rare metals, vol.40, no.2, 383-392.

  5. Zu, Chenxi, Yu, Huigen, Li, Hong. Enabling the thermal stability of solid electrolyte interphase in Li‐ion battery. Infomat : novel materials for next-generation information system, vol.3, no.6, 648-661.

  6. Weng, Wei, Zeng, Chen, Xiao, Wei. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO2@Polydopamine. ACS applied materials & interfaces, vol.11, no.9, 9156-9163.

  7. Zhao, Yu‐Ming, Yue, Feng‐Shu, Li, Shi‐Cheng, Zhang, Yu, Tian, Zhong‐Rong, Xu, Quan, Xin, Sen, Guo, Yu‐Guo. Advances of polymer binders for SILICON‐BASED anodes in high energy density LITHIUM‐ION batteries. Infomat : novel materials for next-generation information system, vol.3, no.5, 460-501.

  8. An, Weili, Xiang, Ben, Fu, Jijiang, Mei, Shixiong, Guo, Siguang, Huo, Kaifu, Zhang, Xuming, Gao, Biao, Chu, Paul K.. Three-dimensional carbon-coating silicon nanoparticles welded on carbon nanotubes composites for high-stability lithium-ion battery anodes. Applied surface science, vol.479, 896-902.

  9. Shao, Rong, Zhu, Feng, Cao, Zhenjiang, Zhang, Zhengping, Dou, Meiling, Niu, Jin, Zhu, Baoning, Wang, Feng. Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.35, 18338-18347.

  10. Zhang, Miao, Zhang, Tengfei, Ma, Yanfeng, Chen, Yongsheng. Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy storage materials, vol.4, 1-14.

  11. Xu, Z.L., Liu, X., Luo, Y., Zhou, L., Kim, J.K.. Nanosilicon anodes for high performance rechargeable batteries. Progress in materials science, vol.90, 1-44.

  12. Zhang, Ziqi, Wang, Huiqiong, Cheng, Meijuan, He, Yang, Han, Xiang, Luo, Linshan, Su, Pengfei, Huang, Wei, Wang, Jianyuan, Li, Cheng, Zhu, Zizhong, Zhang, Qiaobao, Chen, Songyan. Confining invasion directions of Li+ to achieve efficient Si anode material for lithium-ion batteries. Energy storage materials, vol.42, 231-239.

  13. Guo, Yu-Guo. Minimized Lithium Trapping for High Initial Coulombic Efficiency of Silicon Anodes. 物理化學學報 = Acta physico-chimica sinica, vol.36, no.7, 1912010-0.

  14. ZhangThese authors contributed equally to this work., Qiaobao, Chen, Huixin, Luo, Langli, Zhao, Bote, Luo, Hao, Han, Xiang, Wang, Jiangwei, Wang, Chongmin, Yang, Yong, Zhu, Ting, Liu, Meilin. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy & environmental science, vol.11, no.3, 669-681.

  15. Li, Yuzhang, Yan, Kai, Lee, Hyun-Wook, Lu, Zhenda, Liu, Nian, Cui, Yi. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature energy, vol.1, 15029-.

  16. Gauthier, Magali, Mazouzi, Driss, Reyter, David, Lestriez, Bernard, Moreau, Philippe, Guyomard, Dominique, Roué, Lionel. A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy & environmental science, vol.6, no.7, 2145-2155.

  17. Son, In Hyuk, Hwan Park, Jong, Kwon, Soonchul, Park, Seongyong, Rümmeli, Mark H., Bachmatiuk, Alicja, Song, Hyun Jae, Ku, Junhwan, Choi, Jang Wook, Choi, Jae-man, Doo, Seok-Gwang, Chang, Hyuk. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature communications, vol.6, 7393-.

  18. Lv, Yingying, Shang, Mingwei, Chen, Xi, Nezhad, Parisa Shabani, Niu, Junjie. Largely Improved Battery Performance Using a Microsized Silicon Skeleton Caged by Polypyrrole as Anode. ACS nano, vol.13, no.10, 12032-12041.

  19. Lin, Dingchang, Lu, Zhenda, Hsu, Po-Chun, Lee, Hye Ryoung, Liu, Nian, Zhao, Jie, Wang, Haotian, Liu, Chong, Cui, Yi. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy & environmental science, vol.8, no.8, 2371-2376.

  20. Jia, Haiping, Zheng, Jianming, Song, Junhua, Luo, Langli, Yi, Ran, Estevez, Luis, Zhao, Wengao, Patel, Rajankumar, Li, Xiaolin, Zhang, Ji-Guang. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano energy, vol.50, 589-597.

  21. Tian, Huajun, Tan, Xiaojian, Xin, Fengxia, Wang, Chunsheng, Han, Weiqiang. Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano energy, vol.11, 490-499.

  22. Shi, Qitao, Zhou, Junhua, Ullah, Sami, Yang, Xiaoqin, Tokarska, Klaudia, Trzebicka, Barbara, Ta, Huy Quang, Rümmeli, Mark H.. A review of recent developments in Si/C composite materials for Li-ion batteries. Energy storage materials, vol.34, 735-754.

  23. Jia, Haiping, Li, Xiaolin, Song, Junhua, Zhang, Xin, Luo, Langli, He, Yang, Li, Binsong, Cai, Yun, Hu, Shenyang, Xiao, Xingcheng, Wang, Chongmin, Rosso, Kevin M., Yi, Ran, Patel, Rajankumar, Zhang, Ji-Guang. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nature communications, vol.11, no.1, 1474-.

  24. Liu, Jie, Zhang, Qian, Wu, Zhan‐Yu, Li, Jun‐Tao, Huang, Ling, Sun, Shi‐Gang. Nano‐/Microstructured Si/C Composite with High Tap Density as an Anode Material for Lithium‐Ion Batteries. ChemElectroChem, vol.2, no.4, 611-616.

  25. Shen, Yifei, Zhang, Jingmin, Pu, Yongfeng, Wang, Hui, Wang, Bo, Qian, Jiangfeng, Cao, Yuliang, Zhong, Faping, Ai, Xinping, Yang, Hanxi. Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS energy letters, vol.4, 1717-1724.

  26. Xu, Quan, Li, Jin‐Yi, Sun, Jian‐Kun, Yin, Ya‐Xia, Wan, Li‐Jun, Guo, Yu‐Guo. Watermelon‐Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium‐Ion Battery Anodes. Advanced energy materials, vol.7, no.3, 1601481-.

  27. Zhang, Yi-Chi, You, Ya, Xin, Sen, Yin, Ya-Xia, Zhang, Juan, Wang, Ping, Zheng, Xin-sheng, Cao, Fei-Fei, Guo, Yu-Guo. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano energy, vol.25, 120-127.

  28. Zhang, Hui, Zhang, Xiaofeng, Jin, Hong, Zong, Ping, Bai, Yu, Lian, Kun, Xu, Hui, Ma, Fei. A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chemical engineering journal, vol.360, 974-981.

  29. Lu, Zhenda, Liu, Nian, Lee, Hyun-Wook, Zhao, Jie, Li, Weiyang, Li, Yuzhang, Cui, Yi. Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes. ACS nano, vol.9, no.3, 2540-2547.

  30. Cao, Weiyi, Han, Kai, Chen, Mengxun, Ye, Hongqi, Sang, Shangbin. Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching. Electrochimica acta, vol.320, 134613-.

  31. Yang, Yaxiong, Ni, Chaolun, Gao, Mingxia, Wang, Jiangwei, Liu, Yongfeng, Pan, Hongge. Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy storage materials, vol.14, 279-288.

  32. Furquan, Mohammad, Raj Khatribail, Anish, Vijayalakshmi, Savithri, Mitra, Sagar. Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery. Journal of power sources, vol.382, 56-68.

  33. Nie, Ping, Le, Zaiyuan, Chen, Gen, Liu, Dan, Liu, Xiaoyan, Wu, Hao Bin, Xu, Pengcheng, Li, Xinru, Liu, Fang, Chang, Limin, Zhang, Xiaogang, Lu, Yunfeng. Graphene Caging Silicon Particles for High‐Performance Lithium‐Ion Batteries. Small, vol.14, no.25, 1800635-.

  34. Zhu, Shanshan, Zhou, Jianbin, Guan, Yong, Cai, Wenlong, Zhao, Yingyue, Zhu, Yuanchao, Zhu, Linqin, Zhu, Yongchun, Qian, Yitai. Hierarchical Graphene‐Scaffolded Silicon/Graphite Composites as High Performance Anodes for Lithium‐Ion Batteries. Small, vol.14, no.47, 1802457-.

  35. Li, Fu-Sheng, Wu, Yu-Shiang, Chou, Jackey, Wu, Nae-Lih. A dimensionally stable and fast-discharging graphite–silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating. Chemical communications : Chem comm, vol.51, no.40, 8429-8431.

  36. Jiao, L.S., Liu, J.Y., Li, H.Y., Wu, T.S., Li, F., Wang, H.Y., Niu, L.. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes. Journal of power sources, vol.315, 9-15.

  37. Lin, Heng-Yi, Li, Cheng-Hung, Wang, Di-Yan, Chen, Chia-Chun. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode. Nanoscale, vol.8, no.3, 1280-1287.

  38. Hu, Yuxin, Qiao, Yingjun, Xie, Zhengwei, Li, Lin, Qu, Meizhen, Liu, Wenjing, Peng, Gongchang. Water-Soluble Polymer Assists Multisize Three-Dimensional Microspheres as a High-Performance Si Anode for Lithium-Ion Batteries. ACS applied energy materials, vol.4, no.9, 9673-9681.

  39. Chae, Sujong, Kim, Namhyung, Ma, Jiyoung, Cho, Jaephil, Ko, Minseong. One‐to‐One Comparison of Graphite‐Blended Negative Electrodes Using Silicon Nanolayer‐Embedded Graphite versus Commercial Benchmarking Materials for High‐Energy Lithium‐Ion Batteries. Advanced energy materials, vol.7, no.15, 1700071-.

  40. Chae, Sujong, Ko, Minseong, Park, Seungkyu, Kim, Namhyung, Ma, Jiyoung, Cho, Jaephil. Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy & environmental science, vol.9, no.4, 1251-1257.

  41. Wang, Bangrun, Li, Wenwen, Wu, Tian, Guo, Jing, Wen, Zhaoyin. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy storage materials, vol.15, 139-147.

  42. Li, Xiaolin, Gu, Meng, Hu, Shenyang, Kennard, Rhiannon, Yan, Pengfei, Chen, Xilin, Wang, Chongmin, Sailor, Michael J., Zhang, Ji-Guang, Liu, Jun. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature communications, vol.5, 4105-.

  43. Ngo, Duc Tung, Le, Hang T. T., Pham, Xuan-Manh, Jung, Ji-Won, Vu, Ngoc Hung, Fisher, John G., Im, Won-Bin, Kim, Il-Doo, Park, Chan-Jin. Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.6, 2834-2846.

  44. Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G.. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature materials, vol.9, no.4, 353-358.

  45. Ke, Cheng-Zhi, Liu, Fang, Zheng, Zhi-Ming, Zhang, He-He, Cai, Meng-Ting, Li, Miao, Yan, Qi-Zhang, Chen, Hui-Xin, Zhang, Qiao-Bao. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare metals : a Chinese journal of science, technology & applications in the field of rare metals, vol.40, no.6, 1347-1356.

  46. Song, Jiangxuan, Chen, Shuru, Zhou, Mingjiong, Xu, Terrence, Lv, Dongping, Gordin, Mikhail L., Long, Tianjun, Melnyk, Michael, Wang, Donghai. Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.2, no.5, 1257-1262.

  47. Lin, Yong-Mao, Klavetter, Kyle C., Abel, Paul R., Davy, Nicholas C., Snider, Jonathan L., Heller, Adam, Mullins, C. Buddie. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chemical communications : Chem comm, vol.48, no.58, 7268-7270.

  48. Zhou, Xiaosi, Yin, Ya-Xia, Wan, Li-Jun, Guo, Yu-Guo. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chemical communications : Chem comm, vol.48, no.16, 2198-2200.

  49. An, Weili, He, Peng, Xiao, Chengmao, Guo, Eming, Pang, Chunlei, He, Xueqin, Ren, Jianguo, Yuan, Guohui, Du, Ning, Yang, Deren. Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries. ACS applied energy materials, vol.4, no.5, 4976-4985.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로