$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A comparison of hygrothermal simulation results derived from four simulation tools

Journal of building physics, v.45 no.4, 2022년, pp.432 - 456  

Defo, Maurice (Construction Research Centre, National Research Council, Ottawa, ON, Canada) ,  Lacasse, Michael (Construction Research Centre, National Research Council, Ottawa, ON, Canada) ,  Laouadi, Abdelaziz (Construction Research Centre, National Research Council, Ottawa, ON, Canada)

Abstract AI-Helper 아이콘AI-Helper

The objective of this work was to compare the hygrothermal responses and the moisture performance of four wood-frame walls as predicted by four hygrothermal (HAM) simulation tools, namely: DELPHIN, WUFI, hygIRC and COMSOL. The four wall systems differ only in their cladding type; these were fibrebo...

참고문헌 (41)

  1. Criteria for Moisture - Control Design Analysis in Buildings ASHRAE 160 2016 

  2. Solplan Review Burrows J 18 134 2007 

  3. Busser, Thomas, Berger, Julien, Piot, Amandine, Pailha, Mickael, Woloszyn, Monika. Comparative Study of Three Models for Moisture Transfer in Hygroscopic Materials. Transport in porous media, vol.126, no.2, 379-410.

  4. Results of the HAMSTAD Benchmarking Exercises Using hygIRC 1-D Version 1.1 Cornick S 2006 

  5. Proceedings of the IRC building science insight 2003 seminars series Cornick S 1 2003 

  6. 50th IRG annual meeting Defo M 2019 

  7. 10.1007/978-3-642-35003-0 

  8. Delgado, J. M. P. Q., Ramos, N. M. M., Barreira, E., de Freitas, V. P.. A CRITICAL REVIEW OF HYGROTHERMAL MODELS USED IN POROUS BUILDING MATERIALS. Journal of porous media, vol.13, no.3, 221-234.

  9. Dubois, Samuel, Evrard, Arnaud, Lebeau, Frédéric. Modeling the hygrothermal behavior of biobased construction materials. Journal of building physics, vol.38, no.3, 191-213.

  10. Gaur, Abhishek, Lacasse, Michael, Armstrong, Marianne. Climate Data to Undertake Hygrothermal and Whole Building Simulations Under Projected Climate Change Influences for 11 Canadian Cities. Data, vol.4, no.2, 72-.

  11. HAM-BC 2015 Heat, Air and Moisture transport in Building Constructions Gosten A 2015 

  12. Hagentoft, Carl-Eric, Kalagasidis, Angela Sasic, Adl-Zarrabi, Bijan, Roels, Staf, Carmeliet, Jan, Hens, Hugo, Grunewald, John, Funk, Max, Becker, Rachel, Shamir, Dina, Adan, Olaf, Brocken, Harold, Kumaran, Kumar, Djebbar, Reda. Assessment Method of Numerical Prediction Models for Combined Heat, Air and Moisture Transfer in Building Components: Benchmarks for One-dimensional Cases. Journal of thermal envelope and building science, vol.27, no.4, 327-352.

  13. Thermophysics 2010-conference proceedings, 15th international meeting of thermophysical society Hagerstedt SO 93 2010 

  14. Final report task 1: Modelling common exercises. Summary reports. Annex 24, heat and moisture transfer in insulated envelope parts Hens H 1996 

  15. Research Highlights Hill D 1 2005 

  16. Hukka, A., Viitanen, H. A.. A mathematical model of mould growth on wooden material. Wood science and technology, vol.33, no.6, 475-485.

  17. James, C., Simonson, C.J., Talukdar, P., Roels, S.. Numerical and experimental data set for benchmarking hygroscopic buffering models. International journal of heat and mass transfer, vol.53, no.19, 3638-3654.

  18. Janssen, Hans. Simulation efficiency and accuracy of different moisture transfer potentials. Journal of building performance simulation, vol.7, no.5, 379-389.

  19. Overview of the 2-D hygrothermal heat-moisture transport model LATENITE. Karagiozis A 1993 

  20. Knarud, J.I., Geving, S.. Implementation and Benchmarking of a 3D Hygrothermal Model in the COMSOL Multiphysics Software. Energy procedia, vol.78, 3440-3445.

  21. Knarud, Jon Ivar, Geving, Stig. Comparative study of hygrothermal simulations of a masonry wall. Energy procedia, vol.132, 771-776.

  22. ASHRAE Research Project 1018-RP Kumaran MK 2002 

  23. Proceedings of the thermal performance of the exterior envelopes of whole buildings IX-international conference Kunzel HM 2004 

  24. Guideline on Design for Durabiliry of Building Envelopes Lacasse MA 2018 

  25. Gardevinar Maliki M 987 11 66 2014 

  26. eSim 2004 Maref W 190 2004 

  27. Proceedings of the 3rd international conference on computational heat and mass transfer Maref W 243 2003 

  28. Proceedings of the 2nd annual conference on durability and disaster mitigation in wood-frame housing Mukhopadhyaya P 221 2000 

  29. Proceedings of the thermal performance of the exterior envelopes of whole buildings XII international conference Mundt-Petersen S 2013 

  30. National Building Code of Canada NBCC 2015 

  31. Proceedings of the 8th conference on building science and technology, solutions to moisture problems in building enclosures Nofal M 119 2001 

  32. Proceeding buildings XI Ojanen T 2010 

  33. Proceedings of the 2013 COMSOL Conference Ozolins A 2013 

  34. 2014 International reflective insulation manufacturers conference Saber HH 2014 

  35. Numerical simulations to predict the thermal response of insulating concrete form (ICF) wall in cold climate Saber HH 2011 

  36. 10.1520/STP159920160100 

  37. Benchmarking of hygrothgermal model against measurements of drying of full-scale wall assemblies Saber H 2010 

  38. Second annual conference of the CFD society of Canada Salonvaara M 317 1994 

  39. Sontag L, Nicolai A, Vogelsang S (2013) Validierung der Solverimplementierung des hygrothermischen Simulationsprogramms DELPHIN. Gresden, Germany: Institute of Building Climatology (TU Dresden). Available at: http://www.bauklimatik-dresden.de/delphin/benchmarks/hamstad.php (accessed 10 May 2020) 

  40. Viitanen, Hannu A.. Modelling the Time Factor in the Development of Mould Fungi - the Effect of Critical Humidity and Temperature Conditions on Pine and Spruce Sapwood. Holzforschung, vol.51, no.1, 6-14.

  41. Wang, J.Y., Stirling, R, Morris, Paul I., Taylor, A., Lloyd, J., Kirker, G., Lebow, S., Mankowski, M., Barnes, H. M., Morrell, J. J.. DURABILITY OF MASS TIMBER STRUCTURES: A REVIEW OF THE BIOLOGICAL RISKS. Wood and fiber science : journal of the Society of Wood Science and Technology, vol.50, no.spec, 110-127.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로