$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Multiple imputation technique applied to appropriateness ratings in cataract surgery.

Yonsei medical journal v.45 no.5 , 2004년, pp.829 - 837  
Abstract

Missing data such as appropriateness ratings in clinical research are a common problem and this often yields a biased result. This paper aims to introduce the multiple imputation method to handle missing data in clinical research and to suggest that the multiple imputation technique can give more accurate estimates than those of a complete-case analysis. The idea of multiple imputation is that each missing value is replaced with more than one plausible value. The appropriateness method was developed as a pragmatic solution to problem of trying to assess "appropriate" surgical and medical procedures for patients. Cataract surgery was selected as one of four procedures that were evaluated as a part of the Clinical Appropriateness Initiative. We created mild to high missing rates of 10%, 30% and 50% and compared the performance of logistic regression in cataract surgery. We treated the coefficients in the original data as true parameters and compared them with the other results. In the mild missing rate (10%), the deviation from the true coefficients was quite small and ignorable. After removing the missing data, the complete-case analysis did not reveal any serious bias. However, as the missing rate increased, the bias was not ignorable and it distorted the result. This simulation study suggests that a multiple imputation technique can give more accurate estimates than those of a complete-case analysis, especially for moderate to high missing rates (30 - 50%). In addition, the multiple imputation technique yields better accuracy than a single imputation technique. Therefore, multiple imputation is useful and efficient for a situation in clinical research where there is large amounts of missing data.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (1)

  1. Choi, Yoon-Jung ; Bae, Sung-Il ; Lee, Young-Ho ; Kang, Min-Sun 2009. "Analysis of Health Promotion determinants in Major OECD Countries: A pooled cross-sectional time series" 보건행정학회지 = Korean journal of health policy and administration, 19(4): 33~52 

원문보기

원문 PDF 다운로드

  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일