검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
This paper studies the goodness-of-fit test of the residual empirical process of a nearly unstable long-memory time series. Chan and Ling (2008) showed that the usual limit distribution of the Kolmogorov-Smirnov test statistics does not hold for an unstable autoregressive model. A key question of interest is what happens when this model has a near unit root, that is, when it is nearly unstable. In this paper, it is established that the statistics proposed by Chan and Ling can be generalized to encompass nearly unstable long-memory models. In particular, the limit distribution is expressed as a functional of an Ornstein-Uhlenbeck process that is driven by a fractional Brownian motion. Simulation studies demonstrate that the limit distribution of the statistic possesses desirable finite sample properties and power.
#[msc] primary; 62G30 #[msc] secondary; 62M10 #Kolmogorov-Smirnov statistics #Long-memory noises #Nearly unstable time series #Residual empirical processes
원문 PDF 다운로드
원문 URL 링크
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일