$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices 원문보기

Scientific reports, v.5, 2015년, pp.11070 -   

Zheng, Z. Q. (State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics & Engineering, Sun Yat-sen University , Guangzhou 510275, Guangdong, P. R. China) ,  Yao, J. D. (State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics & Engineering, Sun Yat-sen University , Guangzhou 510275, Guangdong, P. R. China) ,  Wang, B. (Shenzhen Key Lab of Micro-nano Photonic Information Technology, Shenzhen Key Laboratory of Sensor Technology, College of Electronic Science and Technology, Shenzhen University , Shenzhen 518060, Guangdong, P. R. China) ,  Yang, G. W. (State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics & Engineering, Sun Yat-sen University , Guangzhou 510275, Guangdong, P. R. China)

Abstract AI-Helper 아이콘AI-Helper

In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible g...

참고문헌 (33)

  1. Lorwongtragool P. , Sowade E. , Watthanawisuth N. , Baumann R. R. & Kerdcharoen T. A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array . Sensors 14 , 19700 – 19712 ( 2014 ). 25340447 

  2. Song Y. et al. Simulation of the recharging method of implantable biosensors based on a wearable incoherent light source . Sensors 14 , 20687 – 20701 ( 2014 ). 25372616 

  3. Pradel K. C. , Wu W. , Ding Y. & Wang Z. L. Solution-Derived ZnO Homojunction Nanowire Films on Wearable Substrates for Energy Conversion and Self-Powered Gesture Recognition . Nano Lett. 14 , 6897 – 6905 ( 2014 ). 25423258 

  4. Ahmad M. Z. et al. Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing . Sensors and Actuators B: Chemical 187 , 295 – 300 ( 2013 ). 

  5. Tulzer G. et al. Kinetic parameter estimation and fluctuation analysis of CO at SnO 2 single nanowires . Nanotechnology 24 , 315501 ( 2013 ). 23851634 

  6. Kim S.-J. , Hwang I.-S. , Choi J.-K. , Kang Y. C. & Lee J.-H. Enhanced C 2 H 5 OH sensing characteristics of nano-porous In 2 O 3 hollow spheres prepared by sucrose-mediated hydrothermal reaction . Sensors and Actuators B: Chemical 155 , 512 – 518 ( 2011 ). 

  7. Zhao Y. et al. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature . Nanotechnology 25 , 115502 ( 2014 ). 24561677 

  8. Lin Y. et al. Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement . Nanoscale 6 , 4604 – 4610 ( 2014 ). 24633007 

  9. Nie Y. et al. The conversion of PN-junction influencing the piezoelectric output of a CuO/ZnO nanoarray nanogenerator and its application as a room-temperature self-powered active H(2)S sensor . Nanotechnology 25 , 265501 ( 2014 ). 24916033 

  10. Guo J. et al. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles . Sensors and Actuators B: Chemical 199 , 339 – 345 ( 2014 ). 

  11. Yin M. , Liu M. & Liu S. Development of an alcohol sensor based on ZnO nanorods synthesized using a scalable solvothermal method . Sensors and Actuators B: Chemical 185 , 735 – 742 ( 2013 ). 

  12. Alenezi M. R. , Henley S. J. , Emerson N. G. & Silva S. R. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties . Nanoscale 6 , 235 – 247 ( 2014 ). 24186303 

  13. Rai P. , Kim Y.-S. , Song H.-M. , Song M.-K. & Yu Y.-T. The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO 2 gases . Sensors and Actuators B: Chemical 165 , 133 – 142 ( 2012 ). 

  14. Choi S.-W. & Kim S. S. Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization . Sensors and Actuators B: Chemical 168 , 8 – 13 ( 2012 ). 

  15. Park S. , An S. , Mun Y. & Lee C. UV-enhanced NO 2 gas sensing properties of SnO 2 -core/ZnO-shell nanowires at room temperature . ACS Appl. Mater. & Interfaces 5 , 4285 – 4292 ( 2013 ). 23627276 

  16. Geng Q. , He Z. , Chen X. , Dai W. & Wang X. Gas sensing property of ZnO under visible light irradiation at room temperature . Sensors and Actuators B: Chemical 188 , 293 – 297 ( 2013 ). 

  17. Lu G. et al. UV-enhanced room temperature NO 2 sensor using ZnO nanorods modified with SnO 2 nanoparticles . Sensors and Actuators B: Chemical 162 , 82 – 88 ( 2012 ). 

  18. Zhai J. et al. UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres . Sensors and Actuators B: Chemical 161 , 292 – 297 ( 2012 ). 

  19. Li H. et al. Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells . Nanoscale 6 , 13203 – 13212 ( 2014 ). 25254313 

  20. Xue Z. et al. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells . ACS Appl. Mater. & Interfaces 6 , 16403 – 16408 ( 2014 ). 25148532 

  21. Hashmi S. G. et al. A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells . J. Mater. Chem. A 2 , 19609 – 19615 ( 2014 ). 

  22. Song J. et al. Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters . Adv. Mater. 25 , 5750 – 5755 ( 2013 ). 23893517 

  23. Tian W. et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms . Adv. Mater. 26 , 3088 – 3093 ( 2014 ). 24523228 

  24. Tian W. et al. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO 2 heterojunction nanofibers . Adv. Mater. 25 , 4625 – 4630 ( 2013 ). 23836722 

  25. Wang J. J. et al. Integrated prototype nanodevices via SnO 2 nanoparticles decorated SnSe nanosheets . Scientific Reports 3 , 2613 ( 2013 ). 24019017 

  26. Huo N. et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS 2 nanoflakes . Scientific Reports 4 , 5209 ( 2014 ). 24909387 

  27. Skotadis E. , Mousadakos D. , Katsabrokou K. , Stathopoulos S. & Tsoukalas D. Flexible polyimide chemical sensors using platinum nanoparticles . Sensors and Actuators B: Chemical 189 , 106 – 112 ( 2013 ). 

  28. Jung M. W. et al. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method . ACS Appl. Mater. & Interfaces 6 , 13319 – 13323 ( 2014 ). 25087923 

  29. Lim S. H. et al. Flexible palladium-based H 2 sensor with fast response and low leakage detection by nanoimprint lithography . ACS Appl. Mater. & Interfaces 5 , 7274 – 7281 ( 2013 ). 23819468 

  30. Song J. , Li J. , Xu J. & Zeng H. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics . Nano Lett. 14 , 6298 – 6305 ( 2014 ). 25302453 

  31. Barsan N. & Weimar U. Conduction model of metal oxide gas sensors . Journal of Electroceramics 7 , 143 – 167 ( 2001 ). 

  32. Fan S.-W. , Srivastava A. K. & Dravid V. P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO . Appl. Phys. Lett. 95 , 142106 ( 2009 ). 

  33. Zeng H. et al. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls . Adv. Funct. Mater. 20 , 561 – 572 ( 2010 ). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로