$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Safe approaches for camptothecin delivery: Structural analogues and nanomedicines 원문보기

Journal of controlled release : official journal of the Controlled Release Society, v.247, 2017년, pp.28 - 54  

Botella, Pablo (Corresponding author.) ,  Rivero-Buceta, Eva

Abstract AI-Helper 아이콘AI-Helper

Abstract Twenty-(S)-camptothecin is a strongly cytotoxic molecule with excellent antitumor activity over a wide spectrum of human cancers. However, the direct formulation is limited by its poor water solubility, low plasmatic stability and severe toxicity, which currently limits its clinical use. A...

주제어

참고문헌 (219)

  1. J. Am. Chem. Soc. Wall 88 3888 1966 10.1021/ja00968a057 Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata 

  2. Cancer Res. Beidler 56 345 1996 Camptothecin resistance involving steps subsequent to the formation of protein-linked DNA breaks in human camptothecin-resistant KB cell lines 

  3. Cancer Res. Giovanella 51 3052 1991 Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-camptothecin 

  4. Cancer Res. Del Bino 50 5746 1990 Diverse effects of camptothecin, an inhibitor of topoisomerase I, on the cell cycle of lymphocytic (L1210, MOLT-4) and myelogenous (HL-60, KG1) leukemic cells 

  5. Cancer Res. Li 32 2643 1972 Action of camptothecin on mammalian cells in culture 

  6. Annu. Rev. Pharmacol. Toxicol. Chen 34 191 1994 10.1146/annurev.pa.34.040194.001203 DNA topoisomerases: essential enzymes and lethal targets 

  7. J. Nat. Prod. Oberlies 67 129 2004 10.1021/np030498t Camptothecin and taxol: historic achievements in natural products research 

  8. Anti-Cancer Drugs Clements 7 851 1996 10.1097/00001813-199611000-00006 Camptothecin exhibits selective cytotoxicity towards human breast carcinoma as compared to normal bovine endothelial cells in vitro 

  9. Heteroat. Chem. Liu 22 687 2011 10.1002/hc.20734 Synthesis and insecticidal activities of novel spin-labeled derivatives of camptothecin 

  10. PLoS One Zhang 8 2013 Characterization of DNA topoisomerase-1 in Spodoptera exigua for toxicity evaluation of camptothecin and hydroxycamptothecin 

  11. Int. J. Dermatol. Lin 27 475 1988 10.1111/j.1365-4362.1988.tb00923.x Topical camptothecine in treatment of psoriasis 

  12. Chin. Med. J. Chiao 1 355 1975 Effect of topical use of camptothecine-dimethyl sulfoxide solution in psoriasis 

  13. Proc. Natl. Acad. Sci. U. S. A. Bodley 92 3726 1995 10.1073/pnas.92.9.3726 Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on trypanosomes and Leishmania 

  14. Antimicrob. Agents Chemother. del Poeta 43 2862 1999 10.1128/AAC.43.12.2862 Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells 

  15. Phosphorus Sulfur Alaghaz 187 799 2012 10.1080/10426507.2011.631643 Synthesis, spectroscopic, and antimicrobial activity studies of novel 10-substituted camptothecin phosphorothioate analogs 

  16. Molecules Li 15 138 2009 10.3390/molecules15010138 The anti-HIV actions of 7- and 10-substituted camptothecins 

  17. Antimicrob. Agents Chemother. Horwitz 2 395 1972 10.1128/AAC.2.5.395 Antiviral action of camptothecin 

  18. Ann. N. Y. Acad. Sci. Boven 922 175 2000 10.1111/j.1749-6632.2000.tb07035.x New analogues of camptothecins. Activity and resistance 

  19. J. Biol. Chem. Hsiang 260 14873 1985 10.1016/S0021-9258(17)38654-4 Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I 

  20. Drug Des. Rev. Online Tobin 1 341 2004 10.2174/1567269043390573 Camptothecins and key lessons in drug design 

  21. J. Appl. Pharmacol. Muqeet 6 286 2014 Camptothecin and its analogs antitumor activity by poisoning topoisomerase I, their structure activity relationship and clinical development perspective of analogs 

  22. Clin. Cancer Res. Garcia-Carbonero 8 641 2002 Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins 

  23. J. Comput. Aided Mol. Des. Carrigan 11 71 1997 10.1023/A:1008027528218 Comparative molecular field analysis and molecular modeling studies of 20-(S)-camptothecin analogs as inhibitors of DNA topoisomerase I and anticancer/antitumor agents 

  24. Biochemistry Zihou 33 10325 1994 10.1021/bi00200a013 Differential interactions of camptothecin lactone and carboxylate forms with human blood components 

  25. Expert Opin. Ther. Pat. Basili 19 555 2009 10.1517/13543770902773437 Novel camptothecin derivatives as topoisomerase I inhibitors 

  26. Pharm. Res. Hatefi 19 1389 2002 10.1023/A:1020427227285 Camptothecin delivery methods 

  27. J. Chem. Eng. Data Zhi 61 2052 2016 10.1021/acs.jced.5b00994 Measurement and correlation of the solubility for camptothecine in different organic solvents 

  28. Expert Opin. Investig. Drugs Zunino 13 269 2004 10.1517/13543784.13.3.269 Camptothecins in clinical development 

  29. Cancer Res. Kunimoto 47 5944 1987 Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin, a novel water soluble derivative of camptothecin, against murine tumors 

  30. Med. Res. Rev. Liu 35 753 2015 10.1002/med.21342 Perspectives on biologically active camptothecin derivatives 

  31. Pharm. Res. Hanson 20 1031 2003 10.1023/A:1024410322870 A mechanistic and kinetic study of the E-ring hydrolysis and lactonization of a novel phosphoryloxymethyl prodrug of camptothecin 

  32. Arch. Pharm. Xu 347 240 2013 10.1002/ardp.201300177 Synthesis and optimization of a bifunctional hyaluronan-based camptothecin prodrug 

  33. Chem. Biodivers. Müller 6 2071 2009 10.1002/cbdv.200900114 Prodrug approaches for enhancing the bioavailability of drugs with low solubility 

  34. Bioorg. Med. Chem. Thomas 12 1585 2004 10.1016/j.bmc.2003.11.036 Camptothecin: current perspectives 

  35. Chem. Rev. Verma 109 213 2009 10.1021/cr0780210 Camptothecins: a SAR/QSAR study 

  36. Mol. Pharm. Venditto 7 307 2010 10.1021/mp900243b Cancer therapies utilizing the camptothecins: a review of the in vivo literature 

  37. J. Med. Chem. Hertzberg 32 715 1989 10.1021/jm00123a038 Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity 

  38. Bioorg. Med. Chem. Srivastava 13 5892 2005 10.1016/j.bmc.2005.05.066 Plant-based anticancer molecules: a chemical and biological profile of some important leads 

  39. Bioorg. Med. Chem. Lett. Wang 18 4095 2008 10.1016/j.bmcl.2008.05.103 Novel hexacyclic camptothecin derivatives. Part 1: synthesis and cytotoxicity of camptothecins with an A-ring fused 1, 3-oxazine ring 

  40. Biochem. Pharmacol. de Cesare 73 656 2007 10.1016/j.bcp.2006.11.004 Preclinical efficacy of ST1976, a novel camptothecin analog of the 7-oxyiminomethyl series 

  41. Bioorg. Med. Chem. Lett. Jiao 21 2071 2011 10.1016/j.bmcl.2011.02.005 Synthesis and antitumor activity of 10-arylcamptothecin derivatives 

  42. Bioorg. Med. Chem. Lett. Dallavalle 18 2781 2008 10.1016/j.bmcl.2008.04.016 Synthesis and cytotoxic activity of new 9-substituted camptothecins 

  43. Chin. Chem. Lett. Xiao 20 566 2009 10.1016/j.cclet.2008.12.019 Synthesis and cytotoxic activity of 7-alkynyl camptothecin derivatives 

  44. J. Med. Chem. Wani 29 2358 1986 10.1021/jm00161a035 Plant antitumor agents. 23. Synthesis and antileukemic activity of camptothecin analogues 

  45. ACS Med. Chem. Lett. Rodriguez-Berna 4 651 2013 10.1021/ml400125z Semisynthesis, cytotoxic activity, and oral availability of new lipophilic 9-substituted camptothecin derivatives 

  46. J. Med. Chem. Wall 36 2689 1993 10.1021/jm00070a013 Plant antitumor agents. 30. Synthesis and structure activity of novel camptothecin analogs 

  47. Cancer Res. Emerson 55 603 1995 In vivo antitumor activity of two new seven-substituted water-soluble camptothecin analogues 

  48. J. Med. Chem. Sugimori 37 3033 1994 10.1021/jm00045a007 Antitumor agents. 7. Synthesis and antitumor activity of novel hexacyclic camptothecin analogues 

  49. J. Med. Chem. Burke 36 2580 1993 10.1021/jm00069a020 Ethyl substitution at the 7 position extends the half-life of 10-hydroxycamptothecin in the presence of human serum albumin 

  50. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. Yu 951-952 62 2014 10.1016/j.jchromb.2014.01.017 Development and validation of a sensitive LC-MS/MS method for simultaneous quantification of sinotecan and its active metabolite in human blood 

  51. Nat. Prod. Res. Sriram 19 393 2005 10.1080/14786410412331299005 Camptothecin and its analogues: a review on their chemotherapeutic potential 

  52. Bioorg. Med. Chem. Lett. Subrahmanyam 9 1633 1999 10.1016/S0960-894X(99)00268-1 Novel C ring analogues of 20(S)-camptothecin. Part-2: synthesis and in vitro cytotoxicity of 5-C-substituted 20(S)-camptothecin analogues 

  53. J. Med. Chem. Duan 54 1715 2011 10.1021/jm101354u 14-Aminocamptothecins: their synthesis, preclinical activity, and potential use for cancer treatment 

  54. J. Clin. Pharmacol. Chatterjee 44 723 2004 10.1177/0091270004265647 Safety, tolerability, pharmacokinetics, and pharmacodynamics of an orally active novel camptothecin analog, DRF-1042, in refractory cancer patients in a phase I dose escalation study 

  55. Bioorg. Med. Chem. Wang 12 3657 2004 10.1016/j.bmc.2004.04.023 Synthesis and antitumor activity of 20-O-linked nitrogen-based camptothecin ester derivatives 

  56. J. Am. Chem. Soc. Hu 135 17617 2013 10.1021/ja409686x Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery 

  57. J. Mater. Chem. B Lin 1 6147 2013 10.1039/c3tb20867b Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers 

  58. ACS Appl. Mater. Interfaces Ha 6 10623 2014 10.1021/am5022864 Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a codelivery system 

  59. Eur. J. Med. Chem. Huang 63 746 2013 10.1016/j.ejmech.2013.01.058 Evolution in medicinal chemistry of E-ring-modified camptothecin analogs as anticancer agents 

  60. Eur. J. Cancer Bleiberg 35 371 1999 10.1016/S0959-8049(98)00423-7 CPT-11 in gastrointestinal cancer 

  61. Cancer Res. Kawato 51 4187 1991 Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11 

  62. Pharm. Res. Tian 22 1837 2005 10.1007/s11095-005-7595-z Human multidrug resistance associated protein 4 confers resistance to camptothecins 

  63. J. Control. Release Bala 172 48 2013 10.1016/j.jconrel.2013.07.022 Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38 

  64. J. Clin. Oncol. Creemers 14 3056 1996 10.1200/JCO.1996.14.12.3056 Topotecan, an active drug in the second-line treatment of epithelial ovarian cancer: results of a large European phase II study 

  65. Cancer Res. Pantazis 53 1577 1993 Regression of human breast carcinoma tumors in immunodeficient mice treated with 9-nitrocamptothecin: differential response of nontumorigenic and tumorigenic human breast cells in vitro 

  66. Expert Opin. Investig. Drugs Clark 15 71 2006 10.1517/13543784.15.1.71 Rubitecan 

  67. Oncologist Burris 3 183 2005 10.1634/theoncologist.10-3-183 Phase II trial of oral rubitecan in previously treated pancreatic cancer patients 

  68. Cancer Res. Treat. Jung 38 159 2006 10.4143/crt.2006.38.3.159 The synergism between belotecan and cisplatin in gastric cancer 

  69. Lung Cancer Lim 80 313 2013 10.1016/j.lungcan.2013.02.009 Phase II study of camtobell inj. (belotecan) in combination with cisplatin in patients with previously untreated, extensive stage small cell lung cancer 

  70. Clin. Cancer Res. Garrison 9 2527 2003 Phase I and pharmacokinetic study of exatecan mesylate administered as a protracted 21-day infusion in patients with advanced solid malignancies 

  71. Br. J. Cancer Gerrits 76 946 1997 10.1038/bjc.1997.490 The bioavailability of oral GI147211 (GG211), a new topoisomerase I inhibitor 

  72. Int. Res. J. Pharm. Ranjit 4 47 2013 Nanoparticle: an overview of preparation, characterization and application 

  73. Lancet Gabizon 384 2175 2014 10.1016/S0140-6736(14)61457-4 Cancer nanomedicines: closing the translational gap 

  74. J. Phys. D. Appl. Phys. Re 45 073001 2012 10.1088/0022-3727/45/7/073001 Nanoparticles for neuroimaging 

  75. Adv. Funct. Mater. Doshi 19 3843 2009 10.1002/adfm.200901538 Designer biomaterials for nanomedicine 

  76. J. Nanobiotechnol. Mahapatro 9 55 2011 10.1186/1477-3155-9-55 Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines 

  77. J. Am. Chem. Soc. Shen 132 4259 2010 10.1021/ja909475m Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery 

  78. Chem. Ind. Duncan 7 262 1997 Polymer therapeutics for tumor specific delivery 

  79. Adv. Drug Deliv. Rev. Venditto 65 80 2013 10.1016/j.addr.2012.09.038 Cancer nanomedicines: so many papers and so few drugs! 

  80. Adv. Drug Deliv. Rev. Torchilin 58 1532 2006 10.1016/j.addr.2006.09.009 Multifunctional nanocarriers 

  81. Curr. Opin. Pharmacol. López-Dávila 12 414 2012 10.1016/j.coph.2012.02.011 Organic nanocarriers for cancer drug delivery 

  82. J. Mater. Sci. Eng. Dikmen 5 468 2011 Advantage and disadvantage in drug delivery systems 

  83. Adv. Drug Deliv. Rev. Matsumura 63 184 2011 10.1016/j.addr.2010.05.008 Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect 

  84. Mutat. Res. Jeetah 768 47 2014 10.1016/j.mrfmmm.2014.04.009 Polymeric nanomicelles for sustained delivery of anti-cancer drugs 

  85. Nanoscale Liu 8 3510 2016 10.1039/C5NR08345A Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles 

  86. Cancer Sci. Matsumura 100 572 2009 10.1111/j.1349-7006.2009.01103.x Preclinical and clinical studies of anticancer agent-incorporating polymer micelles 

  87. Pharm. Res. Opanasopit 21 2001 2004 10.1023/B:PHAM.0000048190.53439.eb Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting 

  88. J. Drug Target. Yokoyama 12 373 2004 10.1080/10611860412331285251 Polymer design and incorporation methods for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin 

  89. Int. J. Pharm. Watanabe 308 183 2006 10.1016/j.ijpharm.2005.10.030 Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability 

  90. Colloids Surf., B Fan 75 543 2010 10.1016/j.colsurfb.2009.09.034 Fabrication of nanomicelle with enhanced solubility and stability of camptothecin based on α,β-poly[(N-carboxybutyl)-L-aspartamide]-camptothecin conjugate 

  91. Colloids Surf., B Zhang 81 297 2010 10.1016/j.colsurfb.2010.07.019 Nanomicelle with long-term circulation and enhanced stability of camptothecin based on mPEGylated α,β-poly(L-aspartic acid)-camptothecin conjugate 

  92. ACS Nano Yen 8 11591 2014 10.1021/nn504836s Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy 

  93. Pharm. Sci. Technol. Today Emerson 3 205 2000 10.1016/S1461-5347(00)00268-6 Liposomal delivery of camptothecins 

  94. AAPS PharmSciTech Sætern 5 2004 10.1208/pt050340 A method to determine the incorporation capacity of camptothecin in liposomes 

  95. Cancer Chemother. Pharmacol. Sugarman 37 531 1996 10.1007/s002800050425 Lipid-complexed camptothecin: formulation and initial biodistribution and antitumor activity studies 

  96. J. Control. Release Watanabe 127 231 2008 10.1016/j.jconrel.2008.02.005 In vivo antitumor activity of camptothecin incorporated in liposomes formulated with an artificial lipid and human serum albumin 

  97. Mol. Pharm. Duncan 8 2101 2011 10.1021/mp200394t Nanomedicine(s) under the microscope 

  98. Eur. J. Med. Chem. Cheng 43 1791 2008 10.1016/j.ejmech.2007.09.030 Potential of poly(amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies 

  99. Adv. Drug Deliv. Rev. Lim 15 826 2012 10.1016/j.addr.2012.03.008 Triazine dendrimers as drug delivery systems: from synthesis to therapy 

  100. Bioconjug. Chem. Gopin 17 1432 2006 10.1021/bc060180n Enzymatic activation of second-generation dendritic prodrugs: conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry 

  101. Chem. Commun. Venditto 5541 2009 10.1039/b911353c Intercepting the synthesis of triazine dendrimers with nucleophilic pharmacophores: a general strategy toward drug delivery vehicles 

  102. RSC Adv. Zolotarskaya 5 58600 2015 10.1039/C5RA07987J Click synthesis of a polyamidoamine dendrimer-based camptothecin prodrug 

  103. J. Polym. Sci. A Polym. Chem. Feng 49 2839 2011 10.1002/pola.24718 Sequential functionalization of janus-type dendrimer-like poly(ethylene oxide)s with camptothecin and folic acid 

  104. J. Bioact. Compat. Polym. Seymour 6 178 1991 10.1177/088391159100600205 Review: synthetic polymers with intrinsic anticancer activity 

  105. Nat. Rev. Drug Discov. Duncan 2 347 2003 10.1038/nrd1088 The dawning era of polymer therapeutics 

  106. Kunugi 2012 Nanomedicine Polymers 

  107. Angew. Chem. Int. Ed. Haag 45 1198 2006 10.1002/anie.200502113 Polymer therapeutics: concepts and applications 

  108. Sun 245 2013 10.1039/9781849737388-00245 RSC Polymer Chemistry Series Functional polymers for nanomedicine. polymer-based prodrugs for cancer chemotherapy 

  109. Acta Biomater. Chen 43 195 2016 10.1016/j.actbio.2016.07.020 Tunable conjugation densities of camptothecin on hyaluronic acid for tumor targeting and reduction-triggered release 

  110. Trends Biotechnol. Vicent 24 39 2006 10.1016/j.tibtech.2005.11.006 Polymer conjugates: nanosized medicines for treating cancer 

  111. Annu. Rev. Chem. Biomol. Eng. Liechty 1 149 2010 10.1146/annurev-chembioeng-073009-100847 Polymers for drug delivery systems 

  112. Polymer Duro-Castano 6 515 2014 10.3390/polym6020515 Peptide-based polymer therapeutics 

  113. J. Am. Chem. Soc. Cai 137 3458 2015 10.1021/ja513034e Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency 

  114. Bioconjug. Chem. Cheng 14 1007 2003 10.1021/bc0340924 Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates 

  115. Mol. Pharm. Cheng 1 183 2004 10.1021/mp049966y Antitumor activity of β-cyclodextrin polymer-camptothecin conjugates 

  116. Proc. Natl. Acad. Sci. U. S. A. Schluep 106 11394 2009 10.1073/pnas.0905487106 Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements 

  117. Adv. Drug Deliv. Rev. Davis 61 1189 2009 10.1016/j.addr.2009.05.005 Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin 

  118. Clin. Cancer Res. Schluep 12 1606 2006 10.1158/1078-0432.CCR-05-1566 Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models 

  119. Cancer Chemother. Pharmacol. Schluep 57 654 2006 10.1007/s00280-005-0091-7 Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice 

  120. Colloids Surf., B Zeng 105 120 2013 10.1016/j.colsurfb.2012.12.024 Hollow nanosphere fabricated from β-cyclodextrin-grafted α,β-poly(aspartic acid) as the carrier of camptothecin 

  121. Eur. J. Pharm. Sci. Minelli 47 686 2012 10.1016/j.ejps.2012.08.003 Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells 

  122. Int. J. Oncol. Zou 18 331 2001 Effectiveness of water soluble poly(L-glutamic acid)camptothecin conjugate against resistant human lung cancer xenografted in nude mice 

  123. J. Control. Release Singer 74 243 2001 10.1016/S0168-3659(01)00323-6 Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo 

  124. Int. J. PharmTech. Res. Kumar 6 433 2014 Enhanced activity of camptothecin hydrogel by using HP-β-cyclodextrin 

  125. J. Control. Release Min 127 208 2008 10.1016/j.jconrel.2008.01.013 Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy 

  126. ACS Nano Soukasene 5 9113 2011 10.1021/nn203343z Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin 

  127. J. Control. Release Huang 155 344 2011 10.1016/j.jconrel.2011.06.004 Inorganic nanoparticles for cancer imaging and therapy 

  128. Mater. Today Giner-Casares 19 19 2016 10.1016/j.mattod.2015.07.004 Inorganic nanoparticles for biomedicine: where materials scientists meet medical research 

  129. Adv. Drug Deliv. Rev. Nam 65 622 2013 10.1016/j.addr.2012.08.015 Surface engineering of inorganic nanoparticles for imaging and therapy 

  130. Dalton Trans. Zhu 43 7275 2014 10.1039/C3DT53493F Uniform iron oxide hollow spheres for high-performance delivery of insoluble anticancer drugs 

  131. Beilstein J. Nanotechnol. Castillo 5 1312 2014 10.3762/bjnano.5.144 PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system 

  132. Curr. Opin. Chem. Biol. Bianco 9 674 2005 10.1016/j.cbpa.2005.10.005 Applications of carbon nanotubes in drug delivery 

  133. Chem. Commun. Sahoo 47 5235 2011 10.1039/c1cc00075f Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study 

  134. ACS Nano Assali 7 2145 2013 10.1021/nn304986x Glyconanosomes: disk-shaped nanomaterials for the water solubilization and delivery of hydrophobic molecules 

  135. Kickelbick 516 2007 Hybrid Materials: Synthesis, Characterization, and Applications 

  136. Mater. Today Fahmi 12 44 2009 10.1016/S1369-7021(09)70159-2 Functional hybrid materials 

  137. Small Li 12 4782 2016 10.1002/smll.201601129 Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery 

  138. Angew. Chem. Int. Ed. Vallet-Regí 46 7548 2007 10.1002/anie.200604488 Mesoporous materials for drug delivery 

  139. Small Lu 3 1341 2007 10.1002/smll.200700005 Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs 

  140. Small Lu 6 1794 2010 10.1002/smll.201000538 Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals 

  141. Nanomed. Nanotechnol. Biol. Med. Lu 8 212 2012 10.1016/j.nano.2011.06.002 In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification 

  142. J. Mater. Chem. Ma 22 5615 2012 10.1039/c2jm15489g Hyaluronic acid-conjugated mesoporous silica nanoparticles: excellent colloidal dispersity in physiological fluids and targeting efficacy 

  143. Nature Asefa 402 867 1999 10.1038/47229 Periodic mesoporous organosilicas with organic groups inside the channel walls 

  144. J. Am. Chem. Soc. Inagaki 121 9611 1999 10.1021/ja9916658 Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks 

  145. Chem. Mater. Melde 11 3302 1999 10.1021/cm9903935 Mesoporous sieves with unified hybrid inorganic/organic frameworks 

  146. Adv. Mater. Chen 28 3235 2016 10.1002/adma.201505147 Chemistry of mesoporous organosilica in nanotechnology: molecularly organic-inorganic hybridization into frameworks 

  147. J. Am. Chem. Soc. Chen 136 16326 2014 10.1021/ja508721y Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine 

  148. J. Am. Chem. Soc. Lu 134 8746 2012 10.1021/ja301691j Multifluorescent traceable nanoparticle by a single-wavelength excitation with color-related drug release performance 

  149. Angew. Chem. Int. Ed. Yan 43 5980 2004 10.1002/anie.200460598 Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities 

  150. Carbohydr. Polym. Hsiao 89 632 2012 10.1016/j.carbpol.2012.03.066 Nano-hybrid carboxymethyl chitosan modified with (3-aminopropyl)triethoxysilane for camptothecin delivery 

  151. J. Control. Release Tyner 95 501 2004 10.1016/j.jconrel.2003.12.027 Nanobiohybrids as delivery vehicles for camptothecin 

  152. Nanoscale Schärtl 2 829 2010 10.1039/c0nr00028k Current directions in core-shell nanoparticle design 

  153. J. Nanopart. Res. Ünal 17 42 2015 10.1007/s11051-014-2838-8 Core-shell hybrid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo evaluation 

  154. ACS Appl. Mater. Interfaces Chen 4 5766 2012 10.1021/am301223n Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery 

  155. Dalton Trans. Botella 41 9286 2012 10.1039/c2dt30381g Multifunctional hybrid materials for combined photo and chemotherapy of cancer 

  156. Langmuir Xu 30 7789 2014 10.1021/la500595b tLyP-1-conjugated Au-nanorod@SiO2 core-shell nanoparticles for tumor targeted drug delivery and photothermal therapy 

  157. Angew. Chem. Int. Ed. Horcajada 45 5974 2006 10.1002/anie.200601878 Metal-organic frameworks as efficient materials for drug delivery 

  158. Acc. Chem. Res. Rocca 44 957 2011 10.1021/ar200028a Nanoscale metal-organic frameworks for biomedical imaging and drug delivery 

  159. Coord. Chem. Rev. Giménez-Marqués 307 342 2016 10.1016/j.ccr.2015.08.008 Nanostructured metal-organic frameworks and their bio-related applications 

  160. ACS Nano Zhuang 8 2812 2014 10.1021/nn406590q Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation 

  161. Mater. Lett. Ji 59 682 2005 10.1016/j.matlet.2004.11.008 Solvothermal synthesis and thermoelectric properties of lanthanum contained Bi-Te and Bi-Se-Te alloys 

  162. J. Control. Release Ganta 126 187 2008 10.1016/j.jconrel.2007.12.017 A review of stimuli-responsive nanocarriers for drug and gene delivery 

  163. Nat. Mater. Mura 12 991 2013 10.1038/nmat3776 Stimuli-responsive nanocarriers for drug delivery 

  164. Adv. Drug Deliv. Rev. Fleige 64 866 2012 10.1016/j.addr.2012.01.020 Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications 

  165. Chem. Soc. Rev. Tong 43 6982 2014 10.1039/C4CS00133H Smart chemistry in polymeric nanomedicine 

  166. Biomaterials Kanamala 85 152 2016 10.1016/j.biomaterials.2016.01.061 Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review 

  167. J. Control. Release Min 144 259 2010 10.1016/j.jconrel.2010.02.024 Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy 

  168. Bioconjug. Chem. Han 24 669 2013 10.1021/bc300640j Targeted nanoparticles assembled via complexation of boronic-acid-containing targeting moieties to diol-containing polymers 

  169. Nanotechnology Tang 24 145101 2013 10.1088/0957-4484/24/14/145101 A pH-responsive chitosan-b-poly(p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery 

  170. RSC Adv. Li 5 77097 2015 10.1039/C5RA15728E A pH-sensitive nanocarrier for co-delivery of doxorubicin and camptothecin to enhance chemotherapeutic efficacy and overcome multidrug resistance in vitro 

  171. Cell Biochem. Funct. Balendiran 22 343 2004 10.1002/cbf.1149 The role of glutathione in cancer 

  172. Biomacromolecules Wang 14 3706 2013 10.1021/bm401086d Redox responsive, core-cross-linked micelles capable of on-demand, concurrent drug release and structure disassembly 

  173. RSC Adv. Muniesa 3 15121 2013 10.1039/c3ra41404c Glutathione-sensitive nanoplatform for monitored intracellular delivery and controlled release of camptothecin 

  174. Mater. Sci. Eng. C Botella 58 692 2016 10.1016/j.msec.2015.09.012 Effect of drug precursor in cell uptake and cytotoxicity of redox-responsive camptothecin nanomedicines 

  175. J. Am. Chem. Soc. Cheetman 135 2907 2013 10.1021/ja3115983 Supramolecular nanostructures formed by anticancer drug assembly 

  176. Chem. Commun. Cheetham 50 6039 2014 10.1039/C3CC49453E Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles 

  177. ACS Nano Lin 8 12690 2014 10.1021/nn505688b Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles 

  178. Adv. Drug Deliv. Rev. Rica 64 967 2012 10.1016/j.addr.2012.01.002 Enzyme-responsive nanoparticles for drug release and diagnostics 

  179. J. Control. Release Botella 156 246 2011 10.1016/j.jconrel.2011.06.039 Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation 

  180. Biomaterials Chen 33 1162 2012 10.1016/j.biomaterials.2011.10.044 The therapeutic efficacy of camptothecin-encapsulated supramolecular nanoparticles 

  181. Pharm. Res. Thiagarajan 27 2307 2010 10.1007/s11095-010-0179-6 PAMAM-camptothecin conjugate inhibits proliferation and induces nuclear fragmentation in colorectal carcinoma cell 

  182. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. Tong 4 638 2012 10.1002/wnan.1188 Shedding light on nanomedicine 

  183. Acc. Chem. Res. Bansal 47 3052 2014 10.1021/ar500217w Photocontrolled nanoparticle delivery systems for biomedical applications 

  184. Angew. Chem. Int. Ed. Croissant 52 13813 2013 10.1002/anie.201308647 Two-photon-triggered drug delivery in cancer cells using nanoimpellers 

  185. Small Lu 4 421 2008 10.1002/smll.200700903 Light-activated nanoimpeller-controlled drug release in cancer cells 

  186. J. Am. Chem. Soc. Tan 137 6112 2015 10.1021/jacs.5b00795 Light-triggered, self-immolative nucleic acid-drug nanostructures 

  187. ACS Nano Chen 8 744 2014 10.1021/nn405398d A light-responsive release platform by controlling the wetting behavior of hydrophobic surface 

  188. Curr. Opin. Colloid Interface Bonini 18 459 2013 10.1016/j.cocis.2013.07.007 Nanostructures for magnetically triggered release of drugs and biomolecules 

  189. Angew. Chem. Int. Ed. Giri 44 5038 2005 10.1002/anie.200501819 Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles 

  190. J. Mater. Chem. Chen 21 2535 2011 10.1039/c0jm02590a Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging 

  191. Acta Biomater. Tung 7 2873 2011 10.1016/j.actbio.2011.03.021 Synthesis of nanocarriers with remote magnetic drug release control and enhanced drug delivery for intracellular targeting of cancer cells 

  192. Langmuir Hu 24 239 2008 10.1021/la701570z Magnetic-sensitive silica nanospheres for controlled drug release 

  193. Acta Biomater. Kong 9 5447 2013 10.1016/j.actbio.2012.11.006 Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release 

  194. J. Control. Release Jhaveri 190 352 2014 10.1016/j.jconrel.2014.05.002 Stimuli-sensitive nanopreparations for combination cancer therapy 

  195. Colloids Surf., B Luo 114 150 2014 10.1016/j.colsurfb.2013.09.043 Thermosensitive PNIPAM-b-HTPB block copolymer micelles: molecular architectures and camptothecin drug release 

  196. Ultrasonics Fang 49 39 2009 10.1016/j.ultras.2008.04.009 Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells 

  197. Adv. Drug Deliv. Rev. Unger 56 1291 2004 10.1016/j.addr.2003.12.006 Therapeutic applications of lipid-coated microbubbles 

  198. Polym. Chem. Ma 5 1503 2014 10.1039/C3PY01202F Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery 

  199. ACS Appl. Mater. Interfaces Sinha 6 22183 2014 10.1021/am505848p Dextran-gated, multifunctional mesoporous nanoparticle for glucose-responsive and targeted drug delivery 

  200. J. Control. Release Svenson 153 49 2011 10.1016/j.jconrel.2011.03.007 Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101 

  201. Nat. Rev. Mater. Wilhelm 1 16014 2016 10.1038/natrevmats.2016.14 Analysis of nanoparticle delivery to tumours 

  202. WIREs Nanomed. Nanobiotechnol. Svenson 6 125 2014 10.1002/wnan.1257 What nanomedicine in the clinic right now really forms nanoparticles? 

  203. Investig. New Drugs Weiss 4 986 2013 10.1007/s10637-012-9921-8 First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies 

  204. Proc. Natl. Acad. Sci. U. S. A. Eliasof 110 15127 2013 10.1073/pnas.1309566110 Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticles 

  205. Proc. Natl. Acad. Sci. U. S. A. Clark 113 3850 2016 10.1073/pnas.1603018113 CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing 

  206. Ann. N. Y. Acad. Sci. Singer 902 136 2000 Conjugation of camptothecins to poly-(l-glutamic acid) 

  207. J. Clin. Oncol. Springett 22 3127 2004 10.1200/jco.2004.22.14_suppl.3127 Phase I study of CT-2106 (polyglutamate camptothecin) in patients with advanced malignancies 

  208. Clin. Cancer Res. Homsi 13 5855 2007 10.1158/1078-0432.CCR-06-2821 Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies 

  209. Adv. Drug Deliv. Rev. Yurkovetskiy 61 1193 2009 10.1016/j.addr.2009.01.007 XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer 

  210. Clin. Cancer Res. Walsh 18 2591 2012 10.1158/1078-0432.CCR-11-1554 Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts 

  211. Mol. Cancer Ther. Sausville 6 A146 2007 A phase I study of the safety, tolerability, and pharmacokinetics of intravenous XMT-1001 in patients with advanced solid tumors 

  212. Crit. Rev. Ther. Drug Greenwald 17 101 2000 10.1615/CritRevTherDrugCarrierSyst.v17.i2.20 Poly(ethylene glycol) conjugated drugs and prodrugs: a comprehensive review 

  213. J. Clin. Oncol. Rowinsky 21 148 2003 10.1200/JCO.2003.03.143 A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3weeks in patients with advanced solid malignancies 

  214. J. Clin. Oncol. Scott 22 2004 10.1200/jco.2004.22.14_suppl.4030 Pegamotecan (EZ-246), a novel PEGylated camptothecin conjugate, for treatment of adenocarcinomas of the stomach and gastroesophageal (GE) junction: preliminary results of a single-agent phase 2 study 

  215. Cancer Chemother. Pharmacol. Scott 63 363 2009 10.1007/s00280-008-0746-2 A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophageal junction adenocarcinoma 

  216. Adv. Drug Deliv. Rev. Duncan 61 1131 2009 10.1016/j.addr.2009.05.007 Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt 

  217. Cancer Chemother. Pharmacol. Conover 42 407 1998 10.1007/s002800050837 Camptothecin delivery systems: enhanced efficacy and tumor accumulation of camptothecin following its conjugation to polyethylene glycol via a glycine linker 

  218. Br. J. Cancer Schoemaker 87 608 2002 10.1038/sj.bjc.6600516 A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin 

  219. Br. J. Cancer Bissett 91 50 2004 10.1038/sj.bjc.6601922 Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT) 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로