$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image‐based, multiscale pore network model

Water resources research, v.52 no.9, 2016년, pp.6833 - 6850  

Bultreys, Tom (UGCT) ,  Van Hoorebeke, Luc (UGCT) ,  Cnudde, Veerle

Abstract AI-Helper 아이콘AI-Helper

AbstractThe two‐phase flow properties of natural rocks depend strongly on their pore structure and wettability, both of which are often heterogeneous throughout the rock. To better understand and predict these properties, image‐based models are being developed. Resulting simulations are ...

Abstract

Key PointsWaterflooding simulations on multiscale pore network models with upscaled microporosity propertiesResults compare well to conventional network models for water‐wet, oil‐wet, and mixed‐wet casesImage‐based network from micro‐CT scan of Estaillades limestone shows that the method is promising

주제어

참고문헌 (56)

  1. Al‐Futaisi , A. , and T. W. Patzek ( 2004 ), Secondary imbibition in NAPL‐invaded mixed‐wet sediments , J. Contam. Hydrol. , 74 , 61 – 81 . 

  2. Al‐Menhali , A. S. , and S. Krevor ( 2016 ), Capillary trapping of CO 2 in oil reservoirs: Observations in a mixed‐wet carbonate rock , Environ. Sci. Technol. , 50 , 2727 – 2734 , doi: 10.1021/acs.est.5b05925 . 

  3. Al‐Raoush , R. , and C. Willson ( 2005 ), Extraction of physically realistic pore network properties from three‐dimensional synchrotron X‐ray microtomography images of unconsolidated porous media systems , J. Hydrol. , 300 , 44 – 64 . 

  4. Al‐Sayari , S. S. ( 2009 ), The Influence of Wettability and Carbon Dioxide Injection on Hydrocarbon Recovery, PhD thesis, Imperial College, London, U. K. 

  5. Arns , J.‐Y. , V. Robins , A. P. Sheppard , R. M. Sok , W. V. Pinczewski , and M. A. Knackstedt ( 2004 ), Effect of network topology on relative permeability , Transp. Porous Media , 55 , 21 – 46 . 

  6. Bauer , D. , S. Youssef , M. Han , S. Bekri , E. Rosenberg , M. Fleury , and O. Vizika ( 2011 ), From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual‐porosity pore‐network approach: Influence of percolation on the electrical transport properties , Phys. Rev. E , 84 , 11 , 133 . 

  7. Bauer , D. , S. Youssef , M. Fleury , S. Bekri , E. Rosenberg , and O. Vizika ( 2012 ), Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed microtomography , Transp. Porous Media , 94 , 505 – 524 . 

  8. Blunt , M. , M. King , and H. Scher ( 1992 ), Simulation and theory of two‐phase flow in porous media , Phys. Rev. A , 46 , 7680 – 7699 . 

  9. Blunt , M. J. ( 1998 ), Physically‐based network modeling of multiphase flow in intermediate‐wet porous media , J. Pet. Sci. Eng. , 20 , 117 – 125 . 

  10. Blunt , M. J. ( 2016 ), Multiphase Flow in Permeable Media: A Pore‐Scale Perspective , Cambridge Univ. Press , Cambridge, U. K . 

  11. Blunt , M. J. , M. D. Jackson , M. Piri , and P. H. Valvatne ( 2002 ), Detailed physics, predictive capabilities and macroscopic consequences for pore‐network models of multiphase flow , Adv. Water Resour. , 25 , 1069 – 1089 . 

  12. Blunt , M. J. , B. Bijeljic , H. Dong , O. Gharbi , S. Iglauer , P. Mostaghimi , A. Paluszny , and C. Pentland ( 2013 ), Pore‐scale imaging and modelling , Adv. Water Resour. , 51 , 197 – 216 . 

  13. Boone , M. , T. De Kock , T. Bultreys , G. De Schutter , P. Vontobel , L. Van Hoorebeke , and V. Cnudde ( 2014 ), 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X‐ray micro‐CT differential imaging , Mater. Charact. , 97 , 150 – 160 . 

  14. Buckley , J. S. , et al. ( 2007 ), Fundamentals of Wettability , Oilfield review, Summer , pp. 44 – 61 . 

  15. Bultreys , T. , W. De Boever , L. Van Hoorebeke , and V. Cnudde ( 2015a ), A multi‐scale, image‐based pore network modeling approach to simulate two‐phase flow in heterogeneous rocks , in International Symposium Of the Society of Core Analysts , pp. 1 – 12 , Soc. of Core Anal ., St. John's, Canada . 

  16. Bultreys , T. , L. Van Hoorebeke , and V. Cnudde ( 2015b ), Multi‐scale, micro‐computed tomography‐based pore network models to simulate drainage in heterogeneous rocks , Adv. Water Resour. , 78 , 36 – 49 . 

  17. Bultreys , T. , W. De Boever , and V. Cnudde ( 2016 ), Imaging and image‐based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state‐of‐the‐art , Earth Sci. Rev. , 155 , 93 – 128 , Cambridge, U. K. 

  18. Cnudde , V. , and M. Boone ( 2013 ), High‐resolution X‐ray computed tomography in geosciences: A review of the current technology and applications , Earth Sci. Rev. , 123 , 1 – 17 . 

  19. Delerue , J. F. , E. Perrier , A. Timmerman , and R. Swennen ( 2003 ), 3D soil image characterization applied to hydraulic properties computation , Geol. Soc. Spec. Publ. , 215 , 167 – 176 . 

  20. Dong , H. , and M. Blunt ( 2009 ), Pore‐network extraction from micro‐computerized‐tomography images , Phys. Rev. E , 80 , 036 , 307 . 

  21. Dong , H. , S. Fjeldstad , L. Alberts , S. Roth , S. Bakke , and P.‐E. Øren ( 2008 ), Pore network modelling on carbonate: A comparative study of different micro‐CT network extraction methods , in International Symposium of the Society of Core Analysts , vol. 31 , Soc. of Core Anal . 

  22. Fatt , I. ( 1956 ), The network model of porous media , Trans. Am. Inst. Min. Metall. Pet. Eng. , 207 , 144 – 181 , Abu Dhabi, U.A.E. 

  23. Gharbi , O. , and M. J. Blunt ( 2012 ), The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis , Water Resour. Res. , 48 , W12513 , doi: 10.1029/2012WR011877 . 

  24. Han , M. , M. Fleury , and P. Levitz ( 2007 ), Effect of the pore structure on resistivity index curves , in International Symposium of the Society of Core Analysts , vol. 34 , Soc. of Core Anal , Calgary, Canada. 

  25. Jiang , Z. , K. Wu , G. Couples , M. I. J. van Dijke , K. S. Sorbie , and J. Ma ( 2007 ), Efficient extraction of networks from three‐dimensional porous media , Water Resour. Res. , 43 , W12S03 , doi: 10.1029/2006WR005780 . 

  26. Jiang , Z. , M. I. J. van Dijke , K. S. Sorbie , and G. D. Couples ( 2013 ), Representation of multiscale heterogeneity via multiscale pore networks , Water Resour. Res. , 49 , 5437 – 5449 , doi: 10.1002/wrcr.20304 . 

  27. Kallel , W. , M. van Dijke , K. Sorbie , R. Wood , Z. Jiang , and S. Harland ( 2015 ), Modelling the effect of wettability distributions on oil recovery from microporous carbonate reservoirs , Adv. Water Resour. , in press. 

  28. Knackstedt , M. , et al. ( 2006 ), 3D Imaging and flow characterization of the pore space of carbonate core samples , in International Symposium of the Society of Core Analysts , Soc. of Core Anal , Trondheim, Norway. 

  29. Kovscek , A. R. , H. Wong , and C. J. Radke ( 1993 ), A pore‐level scenario for the development of mixed wettability in oil reservoirs , AIChE J. , 39 , 1072 – 1085 . 

  30. Lenormand , R. , and C. Zarcone ( 1984 ), Role of roughness and edges during imbibition in square capillaries , SPE J. , pp. 1–17. 

  31. Lindquist , W. , and A. Venkatarangan ( 1999 ), Investigating 3D geometry of porous media from high resolution images , Phys. Chem. Earth Part A , 24 , 593 – 599 . 

  32. Long , H. , C. Nardi , N. Idowu , A. Carnerup , P. E. Øren , M. A. Knackstedt , T. Varslot , and R. M. Sok ( 2013 ), Multi‐scale imaging and modeling workflow to capture and characterize microporosity in sandstone , in International Symposium of the Society of Core Analysts , vol. 13 , pp. 1 – 13 , Soc. of Core Anal , Napa Valley, Calif. 

  33. Mahmud , W. M. , J. Y. Arns , A. Sheppard , M. a. Knackstedt , and W. V. Pinczewski ( 2007 ), Effect of network topology on two‐phase imbibition relative permeability , Transp. Porous Media , 66 , 481 – 493 . 

  34. Masschaele , B. , M. Dierick , D. V. Loo , M. N. Boone , L. Brabant , E. Pauwels , V. Cnudde , and L. V. Hoorebeke ( 2013 ), HECTOR: A 240kV micro‐CT setup optimized for research , J. Phys. Conf. Ser. , 463 , 012,012 . 

  35. Meakin , P. , and A. M. Tartakovsky ( 2009 ), Modeling and simulation of pore‐scale multiphase fluid flow and reactive transport in fractured and porous media , Rev. Geophys. , 47 , RG3002, doi: 10.1029/2008RG000263 . 

  36. Mehmani , A. , and M. Prodanović ( 2014 ), The effect of microporosity on transport properties in porous media , Adv. Water Resour. , 63 , 104 – 119 . 

  37. Moctezuma‐Berthier , P. , O. Vizika , and P. Adler ( 2002 ), Water‐oil relative permeability in vugular porous media: Experiments and simulations , in International Symposium of the Society of Core Analysts , 2 pp., Soc. of Core Anal ., Monterey, Calif . 

  38. Ngom , N. F. , P. Garnier , O. Monga , and S. Peth ( 2011 ), Extraction of three‐dimensional soil pore space from microtomography images using a geometrical approach , Geoderma , 163 , 127 – 134 . 

  39. Øren , P.‐E. , S. Bakke , and O. Arntzen ( 1998 ), Extending predictive capabilities to network models , SPE J. , 3 , 324 – 336 . 

  40. Pagenkemper , S. K. , M. Athmann , D. Uteau , T. Kautz , S. Peth , and R. Horn ( 2015 ), The effect of earthworm activity on soil bioporosity Investigated with X‐ray computed tomography and endoscopy , Soil Tillage Res. , 146 , 79 – 88 . 

  41. Patzek , T. W. ( 2001 ), Verification of a complete pore network simulator of drainage and imbibition , SPE J. , 6 , 144 – 156 . 

  42. Powers , S. E. , W. H. Anckner , and T. F. Seacord ( 1996 ), Wettability of NAPL‐contaminated sands , J. Environ. Eng. , 122 , 889 – 896 . 

  43. Prodanović , M. , and S. L. Bryant ( 2006 ), A level set method for determining critical curvatures for drainage and imbibition , J. Colloid and Interface Sci. , 304 , 442 – 458 . 

  44. Prodanović , M. , A. Mehmani , and A. P. Sheppard ( 2014 ), Imaged‐based multiscale network modelling of microporosity in carbonates , Geol. Soc. Spec. Publ. , 406 , SP406 – SP409 . 

  45. Sahimi , M. ( 2011 ), Flow and Transport in Porous Media and Fractured Rock , John Wiley , Hoboken, N. J . 

  46. Shanley , K. W. , R. M. Cluff , and J. W. Robinson ( 2004 ), Factors controlling prolific gas production from low‐permeability sandstone reservoirs: Implications for resource assessment, prospect development, and risk analysis , AAPG Bulletin 2004, 88 , 1083 – 1121 . 

  47. Sheppard , A. P. , R. M. Sok , H. Averdunk , V. B. Robins , and A. Ghous ( 2006 ), Analysis of rock microstructure using high‐resolution X‐ray tomography , in International Symposium of the Society of Core Analysts , pp. 1 – 12 , Soc. of Core Anal , Trondheim, Norway. 

  48. Silin , D. , and T. Patzek ( 2006 ), Pore space morphology analysis using maximal inscribed spheres , Physica A , 371 , 336 – 360 . 

  49. Skauge , A. , K. Spildo , L. Høiland , and B. Vik ( 2007 ), Theoretical and experimental evidence of different wettability classes , J. Pet. Sci. Eng. , 57 , 321 – 333 . 

  50. Sok , R. M. , M. A. Knackstedt , A. P. Sheppard , W. Pinczewski , W. Lindquist , A. Venkatarangan , and L. Paterson ( 2002 ), Direct and stochastic generation of network models from tomographic images: Effect of topology on residual saturations , Transp. Porous Media , 46 , 345 – 371 . 

  51. Sorbie , K. S. , and A. Skauge ( 2011 ), Can network modelling predict two‐phase flow functions ?, in International Symposium of the Society of Core Analysts , vol. 1956 , Soc. of Core Anal ., Austin, Tex . 

  52. Tanino , Y. , and M. J. Blunt ( 2012 ), Capillary trapping in sandstones and carbonates: Dependence on pore structure , Water Resour. Res. , 48 , W08525 , doi: 10.1029/2011WR011712 . 

  53. Valvatne , P. H. , and M. J. Blunt ( 2004 ), Predictive pore‐scale modeling of two‐phase flow in mixed wet media , Water Resour. Res. , 40 , W07406 , doi: 10.1029/2003WR002627 . 

  54. Vogel , H.‐J. , and K. Roth ( 2001 ), Quantitative morphology and network representation of soil pore structure , Adv. Water Resour. , 24 , 233 – 242 . 

  55. Wildenschild , D. , and A. P. Sheppard ( 2013 ), X‐ray imaging and analysis techniques for quantifying pore‐scale structure and processes in subsurface porous medium systems , Adv. Water Resour. , 51 , 217 – 246 . 

  56. Youssef , S. , M. Han , D. Bauer , E. Rosenberg , S. Bekri , M. Fleury , and O. Vizika ( 2008 ), High resolution ‐CT combined to numerical models to assess electrical properties of bimodal carbonates , in International Symposium of the Society of Core Analysts , vol. 2 , pp. 1 – 12 , Soc. of Core Anal ., Abu Dhabi, U.A.E . 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로