$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis 원문보기

Scientific reports, v.7, 2017년, pp.43012 -   

Frétaud, Maxence (INRA, UR1037 Fish Physiology and Genomics , F-35000 Rennes, France) ,  Rivière, Laurie (Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université) ,  Job, Élodie De (Paris-Saclay , 91190 Gif-sur-Yvette, France) ,  Gay, Stéphanie (Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université) ,  Lareyre, Jean-Jacques (Paris-Saclay , 91190 Gif-sur-Yvette, France) ,  Joly, Jean-Stéphane (INRA, UR1037 Fish Physiology and Genomics , F-35000 Rennes, France) ,  Affaticati, Pierre (INRA, UR1037 Fish Physiology and Genomics , F-35000 Rennes, France) ,  Thermes, Violette (Tefor Core Facility, Paris-Saclay Institute of Neuroscience, CNRS, Université)

Abstract AI-Helper 아이콘AI-Helper

Zebrafish testis has become a powerful model for reproductive biology of teleostean fishes and other vertebrates and encompasses multiple applications in applied and basic research. Many studies have focused on 2D images, which is time consuming and implies extrapolation of results. Three-dimensiona...

참고문헌 (33)

  1. Hwang W. Y. . Efficient genome editing in zebrafish using a CRISPR-Cas system . Nat. Biotechnol. 31 , 227 – 229 ( 2013 ). 23360964 

  2. Hwang W. Y. . Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System . PLoS One 8 , e68708 ( 2013 ). 23874735 

  3. Varshney G. K. . High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9 . Genome Res. 25 , 1030 – 1042 ( 2015 ). 26048245 

  4. Richardson D. S. & Lichtman J. W. Clarifying Tissue Clearing . Cell 162 , 246 – 257 ( 2015 ). 26186186 

  5. Hama H. . Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain . Nat. Neurosci. 14 , 1481 – 1488 ( 2011 ). 21878933 

  6. Ertürk A. . Three-dimensional imaging of solvent-cleared organs using 3DISCO . Nat. Protoc. 7 , 1983 – 1995 ( 2012 ). 23060243 

  7. Chung K. . Structural and molecular interrogation of intact biological systems . Nature 497 , 332 – 337 ( 2013 ). 23575631 

  8. Ke M.-T. , Fujimoto S. & Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction . Nat. Neurosci. 16 , 1154 – 1161 ( 2013 ). 23792946 

  9. Susaki E. A. . Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis . Cell 157 , 726 – 739 ( 2014 ). 24746791 

  10. Silvestri L. , Costantini I. , Sacconi L. & Pavone F. S. Clearing of fixed tissue: a review from a microscopist’s perspective . J. Biomed. Opt. 21 , 081205 – 081205 ( 2016 ). 27020691 

  11. Yang B. . Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing . Cell 158 , 945 – 958 ( 2014 ). 25088144 

  12. Ertürk A. . Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury . Nat. Med . 18 , 166 – 171 ( 2011 ). 22198277 

  13. Gautier A. , Sohm F. , Joly J.-S. , Le Gac F. & Lareyre J.-J. The Proximal Promoter Region of the Zebrafish gsdf Gene Is Sufficient to Mimic the Spatio-Temporal Expression Pattern of the Endogenous Gene in Sertoli and Granulosa Cells . Biol. Reprod. 85 , 1240 – 1251 ( 2011 ). 21816849 

  14. Schulz R. W. . Spermatogenesis in fish . Gen. Comp. Endocrinol. 165 , 390 – 411 ( 2010 ). 19348807 

  15. Parra S. G. Multiphoton microscopy of cleared mouse organs . J. Biomed. Opt. 15 , 036017 ( 2010 ). 20615019 

  16. Epp J. R. . Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs . eNeuro 2 , doi: 10.1523/ENEURO.0022-15.2015 ( 2015 ). 

  17. Lee E. . ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging . Sci. Rep . 6 , 18631 ( 2016 ). 26750588 

  18. Tainaka K. , Kuno A. , Kubota S. I. , Murakami T. & Ueda H. R. Chemical Principles in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling . Annu. Rev. Cell Dev. Biol. 32 , 713 – 741 ( 2016 ). 27298088 

  19. Hama H. . ScaleS: an optical clearing palette for biological imaging . Nat. Neurosci. 18 , 1518 – 1529 ( 2015 ). 26368944 

  20. Kolesová H. , Čapek M. , Radochová B. , Janáček J. & Sedmera D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts . Histochem. Cell Biol . 146 , 141 – 152 ( 2016 ). 27145961 

  21. Schwarz M. K. . Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains . PLOS ONE 10 , e0124650 ( 2015 ). 25993380 

  22. Pan C. . Shrinkage-mediated imaging of entire organs and organisms using uDISCO . Nat. Methods 13 , 859 – 867 ( 2016 ). 27548807 

  23. Liu C. Y. , Dubé P. E. , Girish N. , Reddy A. T. & Polk D. B. Optical reconstruction of murine colorectal mucosa at cellular resolution . Am. J. Physiol. - Gastrointest. Liver Physiol . 308 , G721 – G735 ( 2015 ). 25721303 

  24. Ke M.-T. . Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent . Cell Rep . 14 , 2718 – 2732 ( 2016 ). 26972009 

  25. Tainaka K. . Whole-Body Imaging with Single-Cell Resolution by Tissue Decolorization . Cell 159 , 911 – 924 ( 2014 ). 25417165 

  26. Susaki E. A. & Ueda H. R. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals . Cell Chem. Biol. 23 , 137 – 157 ( 2016 ). 26933741 

  27. Susaki E. A. . Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging . Nat. Protoc. 10 , 1709 – 1727 ( 2015 ). 26448360 

  28. Treweek J. B. . Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping . Nat. Protoc. 10 , 1860 – 1896 ( 2015 ). 26492141 

  29. Fumoto S. , Nishimura K. , Nishida K. & Kawakami S. Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreen1 and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues . PLOS One 11 , e0148233 ( 2016 ). 26824850 

  30. Costantini I. . A versatile clearing agent for multi-modal brain imaging . Sci. Rep . 5 , 9808 ( 2015 ). 25950610 

  31. Staudt T. , Lang M. C. , Medda R. , Engelhardt J. & Hell S. W. 2,2′-Thiodiethanol: A new water soluble mounting medium for high resolution optical microscopy . Microsc. Res. Tech. 70 , 1 – 9 ( 2007 ). 17131355 

  32. Launay P.-S. . Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion . Exp. Eye Res. 139 , 136 – 143 ( 2015 ). 26072022 

  33. Schindelin J. . Fiji: an open-source platform for biological-image analysis . Nat. Methods 9 , 676 – 682 ( 2012 ). 22743772 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로