$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Flexible Graphene-Based Wearable Gas and Chemical Sensors

ACS applied materials & interfaces, v.9 no.40, 2017년, pp.34544 - 34586  

Singh, Eric (Department of Computer Science, Stanford University, Stanford, California 94305,) ,  Meyyappan, M. (Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035,) ,  Nalwa, Hari Singh (Advanced Technology Research, 26650 The Old Road, Valencia, California 91381,)

Abstract AI-Helper 아이콘AI-Helper

Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one...

주제어

참고문헌 (480)

  1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A.. Electric Field Effect in Atomically Thin Carbon Films. Science, vol.306, no.5696, 666-669.

  2. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.. Ultrahigh electron mobility in suspended graphene. Solid state communications, vol.146, no.9, 351-355.

  3. Banszerus, Luca, Schmitz, Michael, Engels, Stephan, Dauber, Jan, Oellers, Martin, Haupt, Federica, Watanabe, Kenji, Taniguchi, Takashi, Beschoten, Bernd, Stampfer, Christoph. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Science advances, vol.1, no.6, e1500222-.

  4. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K.. Fine Structure Constant Defines Visual Transparency of Graphene. Science, vol.320, no.5881, 1308-1308.

  5. Lee, Changgu, Wei, Xiaoding, Kysar, Jeffrey W., Hone, James. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, vol.321, no.5887, 385-388.

  6. Kim, Keun Soo, Zhao, Yue, Jang, Houk, Lee, Sang Yoon, Kim, Jong Min, Kim, Kwang S., Ahn, Jong-Hyun, Kim, Philip, Choi, Jae-Young, Hong, Byung Hee. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, vol.457, no.7230, 706-710.

  7. Lee, Youngbin, Bae, Sukang, Jang, Houk, Jang, Sukjae, Zhu, Shou-En, Sim, Sung Hyun, Song, Young Il, Hong, Byung Hee, Ahn, Jong-Hyun. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.10, no.2, 490-493.

  8. Wang, Guoxiu, Yang, Juan, Park, Jinsoo, Gou, Xinglong, Wang, Bei, Liu, Hao, Yao, Jane. Facile Synthesis and Characterization of Graphene Nanosheets. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.112, no.22, 8192-8195.

  9. Zhu, Chengzhou, Guo, Shaojun, Fang, Youxing, Dong, Shaojun. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS nano, vol.4, no.4, 2429-2437.

  10. Fan, Zhuang-Jun, Kai, Wang, Yan, Jun, Wei, Tong, Zhi, Lin-Jie, Feng, Jing, Ren, Yue-ming, Song, Li-Ping, Wei, Fei. Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS nano, vol.5, no.1, 191-198.

  11. Chen, Haiqun, Müller, Marc B., Gilmore, Kerry J., Wallace, Gordon G., Li, Dan. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced materials, vol.20, no.18, 3557-3561.

  12. Li, Xiaolin, Wang, Xinran, Zhang, Li, Lee, Sangwon, Dai, Hongjie. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, vol.319, no.5867, 1229-1232.

  13. Jiao, Liying, Zhang, Li, Wang, Xinran, Diankov, Georgi, Dai, Hongjie. Narrow graphene nanoribbons from carbon nanotubes. Nature, vol.458, no.7240, 877-880.

  14. Huang, Xiaodan, Qian, Kun, Yang, Jie, Zhang, Jun, Li, Li, Yu, Chengzhong, Zhao, Dongyuan. Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Advanced materials, vol.24, no.32, 4419-4423.

  15. Chen, Zongping, Xu, Chuan, Ma, Chaoqun, Ren, Wencai, Cheng, Hui‐Ming. Lightweight and Flexible Graphene Foam Composites for High‐Performance Electromagnetic Interference Shielding. Advanced materials, vol.25, no.9, 1296-1300.

  16. Le, Linh T., Ervin, Matthew H., Qiu, Hongwei, Fuchs, Brian E., Lee, Woo Y.. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochemistry communications, vol.13, no.4, 355-358.

  17. Yoo, Jung Joon, Balakrishnan, Kaushik, Huang, Jingsong, Meunier, Vincent, Sumpter, Bobby G., Srivastava, Anchal, Conway, Michelle, Mohana Reddy, Arava Leela, Yu, Jin, Vajtai, Robert, Ajayan, Pulickel M.. Ultrathin Planar Graphene Supercapacitors. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.4, 1423-1427.

  18. Huang, Yi, Liang, Jiajie, Chen, Yongsheng. An Overview of the Applications of Graphene‐Based Materials in Supercapacitors. Small, vol.8, no.12, 1805-1834.

  19. Pumera, Martin. Graphene-based nanomaterials for energy storage. Energy & environmental science, vol.4, no.3, 668-674.

  20. Raccichini, Rinaldo, Varzi, Alberto, Passerini, Stefano, Scrosati, Bruno. The role of graphene for electrochemical energy storage. Nature materials, vol.14, no.3, 271-279.

  21. Singh, Eric, Nalwa, Hari Singh. Graphene-Based Dye-Sensitized Solar Cells: A Review. Science of advanced materials, vol.7, no.10, 1863-1912.

  22. Singh, Eric, Nalwa, Hari Singh. Graphene-Based Bulk-Heterojunction Solar Cells: A Review. Journal of nanoscience and nanotechnology, vol.15, no.9, 6237-6278.

  23. Singh, Eric, Nalwa, Hari Singh. Stability of graphene-based heterojunction solar cells. RSC advances, vol.5, no.90, 73575-73600.

  24. Hernaez, Miguel, Zamarreño, Carlos R., Melendi-Espina, Sonia, Bird, Liam R., Mayes, Andrew G., Arregui, Francisco J.. Optical Fibre Sensors Using Graphene-Based Materials: A Review. Sensors, vol.17, no.12, 155-.

  25. Fowler, Jesse D., Allen, Matthew J., Tung, Vincent C., Yang, Kaner, Richard B., Weiller, Bruce H.. Practical Chemical Sensors from Chemically Derived Graphene. ACS nano, vol.3, no.2, 301-306.

  26. Liu, Yuxin, Dong, Xiaochen, Chen, Peng. Biological and chemical sensors based on graphene materials. Chemical Society reviews, vol.41, no.6, 2283-2307.

  27. Hill, E. W., Vijayaragahvan, A., Novoselov, K.. Graphene Sensors. IEEE sensors journal, vol.11, no.12, 3161-3170.

  28. Han, Tae-Hee, Lee, Youngbin, Choi, Mi-Ri, Woo, Seong-Hoon, Bae, Sang-Hoon, Hong, Byung Hee, Ahn, Jong-Hyun, Lee, Tae-Woo. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature photonics, vol.6, no.2, 105-110.

  29. Li, Ning, Oida, Satoshi, Tulevski, George S., Han, Shu-Jen, Hannon, James B., Sadana, Devendra K., Chen, Tze-Chiang. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes. Nature communications, vol.4, 2294-.

  30. Song, Sung Ho, Jang, Min‐Ho, Chung, Jin, Jin, Sung Hawn, Kim, Bo Hyun, Hur, Seung‐Hyun, Yoo, Seunghyup, Cho, Yong‐Hoon, Jeon, Seokwoo. Highly Efficient Light‐Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced optical materials, vol.2, no.11, 1016-1023.

  31. Huang, Bing, Li, Zuanyi, Liu, Zhirong, Zhou, Gang, Hao, Shaogang, Wu, Jian, Gu, Bing-Lin, Duan, Wenhui. Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.112, no.35, 13442-13446.

  32. Wang, Jie, Liang, Minghui, Fang, Yan, Qiu, Tengfei, Zhang, Jin, Zhi, Linjie. Rod‐Coating: Towards Large‐Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Advanced materials, vol.24, no.21, 2874-2878.

  33. Lee, Xiao, Yang, Tingting, Li, Xiao, Zhang, Rujing, Zhu, Miao, Zhang, Hongze, Xie, Dan, Wei, Jinquan, Zhong, Minlin, Wang, Kunlin, Wu, Dehai, Li, Zhihong, Zhu, Hongwei. Flexible graphene woven fabrics for touch sensing. Applied physics letters, vol.102, no.16, 163117-.

  34. Malesevic, Alexander, Kemps, Raymond, Vanhulsel, Annick, Chowdhury, Manish Pal, Volodin, Alexander, Van Haesendonck, Chris. Field emission from vertically aligned few-layer graphene. Journal of applied physics, vol.104, no.8, 084301-.

  35. Wu, Zhong-Shuai, Pei, Songfeng, Ren, Wencai, Tang, Daiming, Gao, Libo, Liu, Bilu, Li, Feng, Liu, Chang, Cheng, Hui-Ming. Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition. Advanced materials, vol.21, no.17, 1756-1760.

  36. Kuzhir, P., Volynets, N., Maksimenko, S., Kaplas, T., Svirko, Yu.. Multilayered Graphene in Ka-Band: Nanoscale Coating for Aerospace Applications. Journal of nanoscience and nanotechnology, vol.13, no.8, 5864-5867.

  37. Siochi, Emilie J.. Graphene in the sky and beyond. Nature nanotechnology, vol.9, no.10, 745-747.

  38. Shen, He, Zhang, Liming, Liu, Min, Zhang, Zhijun. Biomedical Applications of Graphene. Theranostics, vol.2, no.3, 283-294.

  39. Cheng, Chong, Li, Shuang, Thomas, Arne, Kotov, Nicholas A., Haag, Rainer. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical reviews, vol.117, no.3, 1826-1914.

  40. Muñoz, Roberto, Gómez‐Aleixandre, Cristina. Review of CVD Synthesis of Graphene. Chemical vapor deposition : CVD, vol.19, no.10, 297-322.

  41. Yan, Kai, Fu, Lei, Peng, Hailin, Liu, Zhongfan. Designed CVD Growth of Graphene via Process Engineering. Accounts of chemical research, vol.46, no.10, 2263-2274.

  42. Lotya, Mustafa, Hernandez, Yenny, King, Paul J., Smith, Ronan J., Nicolosi, Valeria, Karlsson, Lisa S., Blighe, Fiona M., De, Sukanta, Wang, Zhiming, McGovern, I. T., Duesberg, Georg S., Coleman, Jonathan N.. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, vol.131, no.10, 3611-3620.

  43. Ebert, L B. Intercalation Compounds of Graphite. Annual review of materials science, vol.6, no.6, 181-211.

  44. Dresselhaus, M. S., Dresselhaus, G.. Intercalation compounds of graphite. Advances in physics, vol.51, no.1, 1-186.

  45. Bourlinos, A.B., Safarova, K., Siskova, K., Zboril, R.. The production of chemically converted graphenes from graphite fluoride. Carbon, vol.50, no.3, 1425-1428.

  46. Graphite Fluorides Watanabe N. 2013 

  47. Zhang, L., Liang, J., Huang, Y., Ma, Y., Wang, Y., Chen, Y.. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, vol.47, no.14, 3365-3368.

  48. Parvez, Khaled, Wu, Zhong-Shuai, Li, Rongjin, Liu, Xianjie, Graf, Robert, Feng, Xinliang, Müllen, Klaus. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. Journal of the American Chemical Society, vol.136, no.16, 6083-6091.

  49. Son, D.I., Kwon, B.W., Kim, H.H., Park, D.H., Angadi, B., Choi, W.K.. Chemical exfoliation of pure graphene sheets from synthesized ZnO-graphene quasi core-shell quantum dots. Carbon, vol.59, 289-295.

  50. Gao, Li, Guest, Jeffrey R., Guisinger, Nathan P.. Epitaxial Graphene on Cu(111). Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.10, no.9, 3512-3516.

  51. Riedl, C, Coletti, C, Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. Journal of physics. D, applied physics, vol.43, no.37, 374009-.

  52. Kim, Ki Seok, Ji, You Jin, Nam, Yeonsig, Kim, Ki Hyun, Singh, Eric, Lee, Jin Yong, Yeom, Geun Young. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics. Scientific reports, vol.7, 2462-.

  53. Zhu, Yanwu, Murali, Shanthi, Cai, Weiwei, Li, Xuesong, Suk, Ji Won, Potts, Jeffrey R., Ruoff, Rodney S.. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced materials, vol.22, no.35, 3906-3924.

  54. Fang, Wenjing, Hsu, Allen L., Song, Yi, Kong, Jing. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale, vol.7, no.48, 20335-20351.

  55. Lee, H. Cheun, Liu, Wei-Wen, Chai, Siang-Piao, Mohamed, Abdul Rahman, Aziz, Azizan, Khe, Cheng-Seong, Hidayah, N. M. S., Hashim, U.. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC advances, vol.7, no.26, 15644-15693.

  56. Guo, Shaojun, Dong, Shaojun. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society reviews, vol.40, no.5, 2644-2672.

  57. Oger, N., Lin, Y.F., Labrugere, C., Le Grognec, E., Rataboul, F., Felpin, F.X.. Practical and scalable synthesis of sulfonated graphene. Carbon, vol.96, 342-350.

  58. Quan, Lin, Xin, Zhang, Nan, Xu, Yi-Jun. Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, vol.9, no.7, 2398-2416.

  59. Suk, Ji Won, Kitt, Alexander, Magnuson, Carl W., Hao, Yufeng, Ahmed, Samir, An, Jinho, Swan, Anna K., Goldberg, Bennett B., Ruoff, Rodney S.. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS nano, vol.5, no.9, 6916-6924.

  60. Reina, Alfonso, Jia, Xiaoting, Ho, John, Nezich, Daniel, Son, Hyungbin, Bulovic, Vladimir, Dresselhaus, Mildred S., Kong, Jing. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.9, no.1, 30-35.

  61. Verma, Ved Prakash, Das, Santanu, Lahiri, Indranil, Choi, Wonbong. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied physics letters, vol.96, no.20, 203108-.

  62. Chandrashekar, Bananakere Nanjegowda, Deng, Bing, Smitha, Ankanahalli Shankaregowda, Chen, Yubin, Tan, Congwei, Zhang, Haixia, Peng, Hailin, Liu, Zhongfan. Roll‐to‐Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Advanced materials, vol.27, no.35, 5210-5216.

  63. Bae, Sukang, Kim, Hyeongkeun, Lee, Youngbin, Xu, Xiangfan, Park, Jae-Sung, Zheng, Yi, Balakrishnan, Jayakumar, Lei, Tian, Ri Kim, Hye, Song, Young Il, Kim, Young-Jin, Kim, Kwang S., Özyilmaz, Barbaros, Ahn, Jong-Hyun, Hong, Byung Hee, Iijima, Sumio. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, vol.5, no.8, 574-578.

  64. Kobayashi, Toshiyuki, Bando, Masashi, Kimura, Nozomi, Shimizu, Keisuke, Kadono, Koji, Umezu, Nobuhiko, Miyahara, Kazuhiko, Hayazaki, Shinji, Nagai, Sae, Mizuguchi, Yukiko, Murakami, Yosuke, Hobara, Daisuke. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied physics letters, vol.102, no.2, 023112-.

  65. Valles, C., David Nunez, J., Benito, A.M., Maser, W.K.. Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon, vol.50, no.3, 835-844.

  66. Chen, Jian, Bi, Hui, Sun, Shengrui, Tang, Yufeng, Zhao, Wei, Lin, Tianquan, Wan, Dongyun, Huang, Fuqiang, Zhou, Xiaodong, Xie, Xiaoming, Jiang, Mianheng. Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS applied materials & interfaces, vol.5, no.4, 1408-1413.

  67. Xin, Guoqing, Sun, Hongtao, Hu, Tao, Fard, Hafez Raeisi, Sun, Xiang, Koratkar, Nikhil, Borca‐Tasciuc, Theodorian, Lian, Jie. Large‐Area Freestanding Graphene Paper for Superior Thermal Management. Advanced materials, vol.26, no.26, 4521-4526.

  68. Paliotta, L., De Bellis, G., Tamburrano, A., Marra, F., Rinaldi, A., Balijepalli, S.K., Kaciulis, S., Sarto, M.S.. Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon, vol.89, 260-271.

  69. Ye, Xingke, Zhou, Qianlong, Jia, Chunyang, Tang, Zhonghua, Zhu, Yucan, Wan, Zhongquan. Producing large-area, foldable graphene paper from graphite oxide suspensions by in-situ chemical reduction process. Carbon, vol.114, 424-434.

  70. Yang, Gwangseok, Kim, Hong-Yeol, Jang, Soohwan, Kim, Jihyun. Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers. ACS applied materials & interfaces, vol.8, no.40, 27115-27121.

  71. Martins, Luiz G. P., Song, Yi, Zeng, Tingying, Dresselhaus, Mildred S., Kong, Jing, Araujo, Paulo T.. Direct transfer of graphene onto flexible substrates. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.44, 17762-17767.

  72. Gabriel, Daniel, Sempere, Bernat, Colominas, Carles, Ferrer‐Anglada, Núria. THz‐conductivity of CVD graphene on different substrates. Physica status solidi. PSS. B, Basic solid state physics, vol.252, no.11, 2423-2428.

  73. Lerf, A., He, H., Forster, M., Klinowski, J.. Structure of Graphite Oxide Revisited. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.102, no.23, 4477-4482.

  74. Gao, Wei, Alemany, Lawrence B., Ci, Lijie, Ajayan, Pulickel M.. New insights into the structure and reduction of graphite oxide. Nature chemistry, vol.1, no.5, 403-408.

  75. Yang, C.W., Park, J.W.. The cohesive crack and buckle delamination resistances of indium tin oxide (ITO) films on polymeric substrates with ductile metal interlayers. Surface & coatings technology, vol.204, no.16, 2761-2766.

  76. Seo, Yoon Kyung, Joo, Chul Woong, Lee, Jonghee, Han, Joo Won, Lee, Dong Jin, Entifar, Siti Aisyah Nurmaulia, Kim, Soukyoon, Cho, Nam Sung, Kim, Yong Hyun. Enhanced electrical properties of PEDOT:PSS films using solvent treatment and its application to ITO-free organic light-emitting diodes. Journal of luminescence, vol.187, 221-226.

  77. Seo, Ki-Won, Noh, Yong-Jin, Na, Seok-In, Kim, Han-Ki. Random mesh-like Ag networks prepared via self-assembled Ag nanoparticles for ITO-free flexible organic solar cells. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.155, 51-59.

  78. California, A., Silva, A.S., Goncalves, J., Branco, A., Pinheiro, C., Costa, C.. Silver grid electrodes for faster switching ITO free electrochromic devices. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.153, 61-67.

  79. Kumar, G., Li, Y.D., Biring, S., Lin, Y.N., Liu, S.W., Chang, C.H.. Highly efficient ITO-free organic light-emitting diodes employing a roughened ultra-thin silver electrode. Organic electronics, vol.42, 52-58.

  80. Eising, Marcelo, Cava, Carlos Eduardo, Salvatierra, Rodrigo Villegas, Zarbin, Aldo José Gorgatti, Roman, Lucimara Stolz. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors and actuators. B, Chemical, vol.245, 25-33.

  81. Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D., Lee, Y.H.. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials today, vol.20, no.3, 116-130.

  82. Singh, Eric, Kim, Ki Seok, Yeom, Geun Young, Nalwa, Hari Singh. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells. ACS applied materials & interfaces, vol.9, no.4, 3223-3245.

  83. Kim, Ki Seok, Kim, Ki Hyun, Nam, Yeonsig, Jeon, Jaeho, Yim, Soonmin, Singh, Eric, Lee, Jin Yong, Lee, Sung Joo, Jung, Yeon Sik, Yeom, Geun Young, Kim, Dong Woo. Atomic Layer Etching Mechanism of MoS2 for Nanodevices. ACS applied materials & interfaces, vol.9, no.13, 11967-11976.

  84. Singh, Eric, Kim, Ki Seok, Yeom, Geun Young, Nalwa, Hari Singh. Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC advances, vol.7, no.45, 28234-28290.

  85. Jeong, Hu Young, Kim, Jong Yun, Kim, Jeong Won, Hwang, Jin Ok, Kim, Ji-Eun, Lee, Jeong Yong, Yoon, Tae Hyun, Cho, Byung Jin, Kim, Sang Ouk, Ruoff, Rodney S., Choi, Sung-Yool. Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.10, no.11, 4381-4386.

  86. Kim, Sung Min, Song, Emil B., Lee, Sejoon, Zhu, Jinfeng, Seo, David H., Mecklenburg, Matthew, Seo, Sunae, Wang, Kang L.. Transparent and Flexible Graphene Charge-Trap Memory. ACS nano, vol.6, no.9, 7879-7884.

  87. Petrone, Nicholas, Meric, Inanc, Chari, Tarun, Shepard, Kenneth L., Hone, James. Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics. IEEE journal of the Electron Devices Society, vol.3, no.1, 44-48.

  88. Lee, Jongho, Ha, Tae-Jun, Li, Huifeng, Parrish, Kristen N., Holt, Milo, Dodabalapur, Ananth, Ruoff, Rodney S., Akinwande, Deji. 25 GHz Embedded-Gate Graphene Transistors with High-K Dielectrics on Extremely Flexible Plastic Sheets. ACS nano, vol.7, no.9, 7744-7750.

  89. Fisichella, Gabriele, Lo Verso, Stella, Di Marco, Silvestra, Vinciguerra, Vincenzo, Schilirò, Emanuela, Di Franco, Salvatore, Lo Nigro, Raffaella, Roccaforte, Fabrizio, Zurutuza, Amaia, Centeno, Alba, Ravesi, Sebastiano, Giannazzo, Filippo. Advances in the fabrication of graphene transistors on flexible substrates. Beilstein journal of nanotechnology, vol.8, 467-474.

  90. Lee, Chul‐Ho, Kim, Yong‐Jin, Hong, Young Joon, Jeon, Seong‐Ran, Bae, Sukang, Hong, Byung Hee, Yi, Gyu‐Chul. Flexible Inorganic Nanostructure Light‐Emitting Diodes Fabricated on Graphene Films. Advanced materials, vol.23, no.40, 4614-4619.

  91. Wu, Junbo, Agrawal, Mukul, Becerril, HéctorA., Bao, Zhenan, Liu, Zunfeng, Chen, Yongsheng, Peumans, Peter. Organic Light-Emitting Diodes on Solution-ProcessedGraphene Transparent Electrodes. ACS nano, vol.4, no.1, 43-48.

  92. Zhang, Zhikun, Du, Jinhong, Zhang, Dingdong, Sun, Hengda, Yin, Lichang, Ma, Laipeng, Chen, Jiangshan, Ma, Dongge, Cheng, Hui-Ming, Ren, Wencai. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature communications, vol.8, 14560-.

  93. Xu, Yilin, Yu, Haojian, Wang, Cong, Cao, Jin, Chen, Yigang, Ma, Zhongquan, You, Ying, Wan, Jixiang, Fang, Xiaohong, Chen, Xiaoyuan. Multilayer Graphene with Chemical Modification as Transparent Conducting Electrodes in Organic Light-Emitting Diode. Nanoscale research letters, vol.12, no.1, 254-.

  94. Qiu, Tengfei, Luo, Bin, Liang, Minghui, Ning, Jing, Wang, Bin, Li, Xianglong, Zhi, Linjie. Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices. Carbon, vol.81, 232-238.

  95. Ahn, Jong-Hyun, Hong, Byung Hee. Graphene for displays that bend. Nature nanotechnology, vol.9, no.10, 737-738.

  96. Sun, G., An, J., Chua, C.K., Pang, H., Zhang, J., Chen, P.. Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochemistry communications, vol.51, 33-36.

  97. Ramadoss, Ananthakumar, Yoon, Ki-Yong, Kwak, Myung-Jun, Kim, Sun-I., Ryu, Seung-Tak, Jang, Ji-Hyun. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. Journal of power sources, vol.337, 159-165.

  98. Liu, Lili, Niu, Zhiqiang, Zhang, Li, Zhou, Weiya, Chen, Xiaodong, Xie, Sishen. Nanostructured Graphene Composite Papers for Highly Flexible and Foldable Supercapacitors. Advanced materials, vol.26, no.28, 4855-4862.

  99. Li, Ning, Lv, Tian, Yao, Li, Huili, Liu, Kai, Chen, Tao. Compact graphene/MoS2composite films for highly flexible and stretchable all-solid-state supercapacitors. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.7, 3267-3273.

  100. Yin, Zongyou, Sun, Shuangyong, Salim, Teddy, Wu, Shixin, Huang, Xiao, He, Qiyuan, Lam, Yeng Ming, Zhang, Hua. Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS nano, vol.4, no.9, 5263-5268.

  101. Konios, Dimitrios, Petridis, Constantinos, Kakavelakis, George, Sygletou, Maria, Savva, Kyriaki, Stratakis, Emmanuel, Kymakis, Emmanuel. Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices. Advanced functional materials, vol.25, no.15, 2213-2221.

  102. YoonThese authors contributed equally to this work., Jungjin, Sung, Hyangki, Lee, Gunhee, Cho, Woohyung, Ahn, Namyoung, Jung, Hyun Suk, Choi, Mansoo. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy & environmental science, vol.10, no.1, 337-345.

  103. Baker, Jennifer A., Worsley, Carys, Lee, Harrison K. H., Clark, Ronald N., Tsoi, Wing C., Williams, Geraint, Worsley, David A., Gethin, David T., Watson, Trystan M.. Development of Graphene Nano‐Platelet Ink for High Voltage Flexible Dye Sensitized Solar Cells with Cobalt Complex Electrolytes. Advanced engineering materials, vol.19, no.3, 1600652-.

  104. Yang, Jun, Ran, Qincui, Wei, Dapeng, Sun, Tai, Yu, Leyong, Song, Xuefen, Pu, Lichun, Shi, Haofei, Du, Chunlei. Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin. Nanotechnology, vol.28, no.11, 115501-.

  105. Torres Alonso, Elias, Karkera, George, Jones, Gareth F., Craciun, Monica F., Russo, Saverio. Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes. ACS applied materials & interfaces, vol.8, no.26, 16541-16545.

  106. Ryu, Jaechul, Kim, Youngsoo, Won, Dongkwan, Kim, Nayoung, Park, Jin Sung, Lee, Eun-Kyu, Cho, Donyub, Cho, Sung-Pyo, Kim, Sang Jin, Ryu, Gyeong Hee, Shin, Hae-A-Seul, Lee, Zonghoon, Hong, Byung Hee, Cho, Seungmin. Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition. ACS nano, vol.8, no.1, 950-956.

  107. Liang, Jiajie, Li, Lu, Tong, Kwing, Ren, Zhi, Hu, Wei, Niu, Xiaofan, Chen, Yongsheng, Pei, Qibing. Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes. ACS nano, vol.8, no.2, 1590-1600.

  108. Huang, Lu, Huang, Yi, Liang, Jiajie, Wan, Xiangjian, Chen, Yongsheng. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano research, vol.4, no.7, 675-684.

  109. Li, Wenbo, Li, Fengyu, Li, Huizeng, Su, Meng, Gao, Meng, Li, Yanan, Su, Dan, Zhang, Xingye, Song, Yanlin. Flexible Circuits and Soft Actuators by Printing Assembly of Graphene. ACS applied materials & interfaces, vol.8, no.19, 12369-12376.

  110. Yang, Jun, Wei, Dapeng, Tang, Linlong, Song, Xuefen, Luo, Wei, Chu, Jin, Gao, Tianpeng, Shi, Haofei, Du, Chunlei. Wearable temperature sensor based on graphene nanowalls. RSC advances, vol.5, no.32, 25609-25615.

  111. Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. A Stretchable and Highly Sensitive Graphene‐Based Fiber for Sensing Tensile Strain, Bending, and Torsion. Advanced materials, vol.27, no.45, 7365-7371.

  112. Singh, E.; Meyyappan, M.; Nalwa, H. S.InNanomaterials based Flexible and Multifunctional Sensors;Singh, E.; Nalwa, H. S., Eds.American Scientific Publishers:Los Angeles, 2018; pp1-50. 

  113. Ren, Jiesheng, Wang, Chaoxia, Zhang, Xuan, Carey, Tian, Chen, Kunlin, Yin, Yunjie, Torrisi, Felice. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, vol.111, 622-630.

  114. Liu, Ying, Tao, Lu-Qi, Wang, Dan-Yang, Zhang, Tian-Yu, Yang, Yi, Ren, Tian-Ling. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Applied physics letters, vol.110, no.12, 123508-.

  115. Yasaei, Poya, Kumar, Bijandra, Hantehzadeh, Reza, Kayyalha, Morteza, Baskin, Artem, Repnin, Nikita, Wang, Canhui, Klie, Robert F., Chen, Yong P., Král, Petr, Salehi-Khojin, Amin. Chemical sensing with switchable transport channels in graphene grain boundaries. Nature communications, vol.5, 4911-.

  116. Kim, Minsu, Kang, Pilgyu, Leem, Juyoung, Nam, SungWoo. A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale, vol.9, no.12, 4058-4065.

  117. Wang, Zhenxing, Shaygan, Mehrdad, Otto, Martin, Schall, Daniel, Neumaier, Daniel. Flexible Hall sensors based on graphene. Nanoscale, vol.8, no.14, 7683-7687.

  118. Tao, Lu-Qi, Tian, He, Liu, Ying, Ju, Zhen-Yi, Pang, Yu, Chen, Yuan-Quan, Wang, Dan-Yang, Tian, Xiang-Guang, Yan, Jun-Chao, Deng, Ning-Qin, Yang, Yi, Ren, Tian-Ling. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nature communications, vol.8, 14579-.

  119. Fan, Z., Liu, B., Liu, X., Li, Z., Wang, H., Yang, S., Wang, J.. A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochimica acta, vol.109, 602-608.

  120. Singhal, Akshay V., Charaya, Hemant, Lahiri, Indranil. Noble Metal Decorated Graphene-Based Gas Sensors and Their Fabrication: A Review. Critical reviews in solid state and materials sciences, vol.42, no.6, 499-526.

  121. Wang, Tao, Huang, Da, Yang, Zhi, Xu, Shusheng, He, Guili, Li, Xiaolin, Hu, Nantao, Yin, Guilin, He, Dannong, Zhang, Liying. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-micro letters, vol.8, no.2, 95-119.

  122. Some, Surajit, Xu, Yang, Kim, Youngmin, Yoon, Yeoheung, Qin, Hongyi, Kulkarni, Atul, Kim, Taesung, Lee, Hyoyoung. Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes. Scientific reports, vol.3, 1868-.

  123. Rumyantsev, Sergey, Liu, Guanxiong, Shur, Michael S., Potyrailo, Radislav A., Balandin, Alexander A.. Selective Gas Sensing with a Single Pristine Graphene Transistor. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.5, 2294-2298.

  124. Recent progress in applications of graphene oxide for gas sensing: A review. Analytica chimica acta : an international journal devoted to all branches of analytical chemistry, vol.878, 43-53.

  125. Graphene-based hybrids for chemiresistive gas sensors. Trends in analytical chemistry : TrAC, vol.68, 37-47.

  126. Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A.. Recent advances in graphene based gas sensors. Sensors and actuators. B, Chemical, vol.218, 160-183.

  127. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., Novoselov, K. S.. Detection of individual gas molecules adsorbed on graphene. Nature materials, vol.6, no.9, 652-655.

  128. Shen, Jianhua, Zhu, Yihua, Yang, Xiaoling, Li, Chunzhong. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical communications : Chem comm, vol.48, no.31, 3686-3699.

  129. Ko, G., Kim, H.Y., Ahn, J., Park, Y.M., Lee, K.Y., Kim, J.. Graphene-based nitrogen dioxide gas sensors. Current applied physics : the official journal of the Korean Physical Society, vol.10, no.4, 1002-1004.

  130. Basu, S., Bhattacharyya, P.. Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and actuators. B, Chemical, vol.173, 1-21.

  131. Ben Aziza, Zeineb, Zhang, Qing, Baillargeat, Dominique. Graphene/mica based ammonia gas sensors. Applied physics letters, vol.105, no.25, 254102-.

  132. Jung, Min Wook, Myung, Sung, Song, Wooseok, Kang, Min-A, Kim, Sung Ho, Yang, Cheol-Soo, Lee, Sun Sook, Lim, Jongsun, Park, Chong-Yun, Lee, Jeong-O, An, Ki-Seok. Novel Fabrication of Flexible Graphene-Based Chemical Sensors with Heaters using Soft Lithographic Patterning Method. ACS applied materials & interfaces, vol.6, no.16, 13319-13323.

  133. Cooper, James S., Myers, Mathew, Chow, Edith, Hubble, Lee J., Cairney, Julie M., Pejcic, Bobby, Müller, Karl-H., Wieczorek, Lech, Raguse, Burkhard. Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, vol.16, no.1, 2173-.

  134. Han, Tae Hee, Huang, Yi-Kai, Tan, Alvin T. L., Dravid, Vinayak P., Huang, Jiaxing. Steam Etched Porous Graphene Oxide Network for Chemical Sensing. Journal of the American Chemical Society, vol.133, no.39, 15264-15267.

  135. Lu, Ganhua, Ocola, Leonidas E, Chen, Junhong. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, vol.20, no.44, 445502-.

  136. Dan, Yaping, Lu, Ye, Kybert, Nicholas J., Luo, Zhengtang, Johnson, A. T. Charlie. Intrinsic Response of Graphene Vapor Sensors. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.9, no.4, 1472-1475.

  137. Lu, Ye, Goldsmith, B. R., Kybert, N. J., Johnson, A. T. C.. DNA-decorated graphene chemical sensors. Applied physics letters, vol.97, no.8, 083107-.

  138. Ratinac, Kyle R., Yang, Wenrong, Ringer, Simon P., Braet, Filip. Toward Ubiquitous Environmental Gas Sensors?Capitalizing on the Promise of Graphene. Environmental science & technology, vol.44, no.4, 1167-1176.

  139. Jiang, Zaixing, Wang, Jiajun, Meng, Linghui, Huang, Yudong, Liu, Li. A highly efficient chemical sensor material for ethanol: Al2O3/Graphene nanocomposites fabricated from graphene oxide. Chemical communications : Chem comm, vol.47, no.22, 6350-6352.

  140. Song, Hongjie, Zhang, Lichun, He, Chunlan, Qu, Ying, Tian, Yunfei, Lv, Yi. Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. Journal of materials chemistry, vol.21, no.16, 5972-5977.

  141. Lu, Ganhua, Park, Sungjin, Yu, Kehan, Ruoff, Rodney S., Ocola, Leonidas E., Rosenmann, Daniel, Chen, Junhong. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS nano, vol.5, no.2, 1154-1164.

  142. Lin, Q., Li, Y., Yang, M.. Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sensors and actuators. B, Chemical, vol.173, 139-147.

  143. Yuan, Wenjing, Shi, Gaoquan. Graphene-based gas sensors. Journal of materials chemistry. A, Materials for energy and sustainability, vol.1, no.35, 10078-.

  144. Wu, Z., Chen, X., Zhu, S., Zhou, Z., Yao, Y., Quan, W., Liu, B.. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors and actuators. B, Chemical, vol.178, 485-493.

  145. Choi, Sun-Woo, Kim, Jaeseong, Byun, Young Tae. Highly sensitive and selective NO2 detection by Pt nanoparticles-decorated single-walled carbon nanotubes and the underlying sensing mechanism. Sensors and actuators. B, Chemical, vol.238, 1032-1042.

  146. Lu, Yijang, Meyyappan, M., Li, Jing. Fabrication of carbon-nanotube-based sensor array and interference study. Journal of materials research, vol.26, no.16, 2017-2023.

  147. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., Meyyappan, M.. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.3, no.7, 929-933.

  148. Li, Jing, Lu, Yijiang, Ye, Qi, Delzeit, Lance, Meyyappan, M.. A Gas Sensor Array Using Carbon Nanotubes and Microfabrication Technology. Electrochemical and solid-state letters, vol.8, no.11, H100-.

  149. Lu, Y., Partridge, C., Meyyappan, M., Li, J.. A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis. Journal of electroanalytical chemistry, vol.593, no.1, 105-110.

  150. Yang, Wei, Gan, Lin, Li, Huiqiao, Zhai, Tianyou. Two-dimensional layered nanomaterials for gas-sensing applications. Inorganic chemistry frontiers : an international journal of inorganic chemistry, vol.3, no.4, 433-451.

  151. Donarelli, M., Prezioso, S., Perrozzi, F., Bisti, F., Nardone, M., Giancaterini, L., Cantalini, C., Ottaviano, L.. Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sensors and actuators. B, Chemical, vol.207, no.1, 602-613.

  152. Urasinska-Wojcik, Barbara, Vincent, Timothy A., Chowdhury, Mohamed F., Gardner, Julian W.. Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment. Sensors and actuators. B, Chemical, vol.239, 1051-1059.

  153. Perrozzi, F., Emamjomeh, S.M., Paolucci, V., Taglieri, G., Ottaviano, L., Cantalini, C.. Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sensors and actuators. B, Chemical, vol.243, 812-822.

  154. Khan, Asif Ali, Ahmad, Rais, Zeeshan, Mohd.. Comparative sensing of aldehyde and ammonia vapours on synthetic polypyrrole-Sn(IV)arsenotungstate nanocomposite cation exchange material. Analytical chemistry research, vol.12, 52-64.

  155. Ricciardella, F., Massera, E., Polichetti, T., Miglietta, M. L., Di Francia, G.. A calibrated graphene-based chemi-sensor for sub parts-per-million NO2 detection operating at room temperature. Applied physics letters, vol.104, no.18, 183502-.

  156. Deng, Suzi, Tjoa, Verawati, Fan, Hai Ming, Tan, Hui Ru, Sayle, Dean C., Olivo, Malini, Mhaisalkar, Subodh, Wei, Jun, Sow, Chorng Haur. Reduced Graphene OxideConjugated Cu2ONanowire Mesocrystals for High-Performance NO2 Gas Sensor. Journal of the American Chemical Society, vol.134, no.10, 4905-4917.

  157. Su, P.G., Shieh, H.C.. Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sensors and actuators. B, Chemical, vol.190, 865-872.

  158. Yang, Gwangseok, Lee, Chongmin, Kim, Jihyun, Ren, Fan, Pearton, Stephen J.. Flexible graphene-based chemical sensors on paper substrates. Physical chemistry chemical physics : PCCP, vol.15, no.6, 1798-1801.

  159. Dua, Vineet, Surwade, Sumedh P., Ammu, Srikanth, Agnihotra, Srikanth Rao, Jain, Sujit, Roberts, Kyle E., Park, Sungjin, Ruoff, Rodney S., Manohar, Sanjeev K.. All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angewandte Chemie. international edition, vol.49, no.12, 2154-2157.

  160. Kim, Yeon Hoo, Kim, Sang Jin, Kim, Yong-Jin, Shim, Yeong-Seok, Kim, Soo Young, Hong, Byung Hee, Jang, Ho Won. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. ACS nano, vol.9, no.10, 10453-10460.

  161. Strong, Veronica, Dubin, Sergey, El-Kady, Maher F., Lech, Andrew, Wang, Yue, Weiller, Bruce H., Kaner, Richard B.. Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices. ACS nano, vol.6, no.2, 1395-1403.

  162. Jeong, Hu Young, Lee, Dae-Sik, Choi, Hong Kyw, Lee, Duck Hyun, Kim, Ji-Eun, Lee, Jeong Yong, Lee, Won Jong, Kim, Sang Ouk, Choi, Sung-Yool. Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Applied physics letters, vol.96, no.21, 213105-.

  163. Ju Yun, Yong, Hong, Won G., Choi, Nak-Jin, Hoon Kim, Byung, Jun, Yongseok, Lee, Hyung-Kun. Ultrasensitive and Highly Selective Graphene-Based Single Yarn for Use in Wearable Gas Sensor. Scientific reports, vol.5, 10904-.

  164. Huang, Lei, Wang, Zhenping, Zhang, Jiankun, Pu, Jianlong, Lin, Youjie, Xu, Shuhua, Shen, Leo, Chen, Qi, Shi, Wangzhou. Fully Printed, Rapid-Response Sensors Based on Chemically Modified Graphene for Detecting NO2 at Room Temperature. ACS applied materials & interfaces, vol.6, no.10, 7426-7433.

  165. Tung, Tran Thanh, Castro, Mickael, Kim, Tae Young, Suh, Kwang S., Feller, Jean-Francois. High stability silver nanoparticles-graphene/poly(ionic liquid)-based chemoresistive sensors for volatile organic compounds’ detection. Analytical and bioanalytical chemistry, vol.406, no.16, 3995-4004.

  166. Cho, Byungjin, Yoon, Jongwon, Hahm, Myung Gwan, Kim, Dong-Ho, Kim, Ah Ra, Kahng, Yung Ho, Park, Sang-Won, Lee, Young-Joo, Park, Sung-Gyu, Kwon, Jung-Dae, Kim, Chang Su, Song, Myungkwan, Jeong, Yongsoo, Nam, Kee-Seok, Ko, Heung Cho. Graphene-based gas sensor: metal decoration effect and application to a flexible device. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.2, no.27, 5280-5285.

  167. Chen, Gugang, Paronyan, Tereza M., Harutyunyan, Avetik R.. Sub-ppt gas detection with pristine graphene. Applied physics letters, vol.101, no.5, 053119-.

  168. Ricciardella, Filiberto, Vollebregt, Sten, Polichetti, Tiziana, Miscuglio, Mario, Alfano, Brigida, Miglietta, Maria L., Massera, Ettore, Di Francia, Girolamo, Sarro, Pasqualina M.. Effects of graphene defects on gas sensing properties towards NO2 detection. Nanoscale, vol.9, no.18, 6085-6093.

  169. Yavari, Fazel, Castillo, Eduardo, Gullapalli, Hemtej, Ajayan, Pulickel M., Koratkar, Nikhil. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Applied physics letters, vol.100, no.20, 203120-.

  170. Wu, J.; Tao, K.; Miao, J.; Norford, L. K.InIEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS);IEEE:Shanghai, 2016; pp889-892. 

  171. Zhang, Shaolin, Hang, Nguyen Thuy, Zhang, Zhijun, Yue, Hongyan, Yang, Woochul. Preparation of g-C 3 N 4 /Graphene Composite for Detecting NO 2 at Room Temperature. Nanomaterials, vol.7, no.1, 12-.

  172. Pearce, R., Iakimov, T., Andersson, M., Hultman, L., Spetz, A.L., Yakimova, R.. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sensors and actuators. B, Chemical, vol.155, no.2, 451-455.

  173. Long, Hu, Harley‐Trochimczyk, Anna, Pham, Thang, Tang, Zirong, Shi, Tielin, Zettl, Alex, Carraro, Carlo, Worsley, Marcus A., Maboudian, Roya. High Surface Area MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection. Advanced functional materials, vol.26, no.28, 5158-5165.

  174. Chung, Min Gyun, Kim, Dai Hong, Lee, Hyun Myoung, Kim, Taewoo, Choi, Jong Ho, Seo, Dong kyun, Yoo, Ji-Beom, Hong, Seong-Hyeon, Kang, Tae June, Kim, Yong Hyup. Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and actuators. B, Chemical, vol.166, 172-176.

  175. Choi, HongKyw, Jeong, Hu Young, Lee, Dae-Sik, Choi, Choon-Gi, Choi, Sung-Yool. Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition. Carbon letters, vol.14, no.3, 186-189.

  176. Shaik, Mahabul, Rao, V. K., Gupta, Manish, Murthy, K. S. R. C., Jain, Rajeev. Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped graphene nanosheets. RSC advances, vol.6, no.2, 1527-1534.

  177. Piloto, Carlo, Notarianni, Marco, Shafiei, Mahnaz, Taran, Elena, Galpaya, Dilini, Yan, Cheng, Motta, Nunzio. Highly NO 2 sensitive caesium doped graphene oxide conductometric sensors. Beilstein journal of nanotechnology, vol.5, 1073-1081.

  178. Xia, Yi, Wang, Jing, Xu, Jian-Long, Li, Xian, Xie, Dan, Xiang, Lan, Komarneni, Sridhar. Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO2 Sensors. ACS applied materials & interfaces, vol.8, no.51, 35454-35463.

  179. Zhang, H., Feng, J., Fei, T., Liu, S., Zhang, T.. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensors and actuators. B, Chemical, vol.190, 472-478.

  180. Wang, Ziying, Zhao, Chen, Han, Tianyi, Zhang, Yong, Liu, Sen, Fei, Teng, Lu, Geyu, Zhang, Tong. High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sensors and actuators. B, Chemical, vol.242, 269-279.

  181. Liu, Xin, Cui, Jiashan, Sun, Jianbo, Zhang, Xitian. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC advances, vol.4, no.43, 22601-.

  182. Xiao, Yan, Yang, Qiuyue, Wang, Zhenyu, Zhang, Rui, Gao, Yuan, Sun, Peng, Sun, Yanfeng, Lu, Geyu. Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. Sensors and actuators. B, Chemical, vol.227, 419-426.

  183. Su, P.G., Peng, S.L.. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta, vol.132, 398-405.

  184. Dong, Ying-li, Zhang, Xian-fa, Cheng, Xiao-li, Xu, Ying-ming, Gao, Shan, Zhao, Hui, Huo, Li-hua. Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC advances, vol.4, no.101, 57493-57500.

  185. Wu, Jin, Tao, Kai, Miao, Jianmin, Norford, Leslie K.. Improved Selectivity and Sensitivity of Gas Sensing Using a 3D Reduced Graphene Oxide Hydrogel with an Integrated Microheater. ACS applied materials & interfaces, vol.7, no.49, 27502-27510.

  186. Duy, Le Thai, Trung, Tran Quang, Hanif, Adeela, Siddiqui, Saqib, Roh, Eun, Lee, Wonil, Lee, Nae-Eung. A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide. 2d materials, vol.4, no.2, 025062-.

  187. Lee, C., Ahn, J., Lee, K.B., Kim, D., Kim, J.. Graphene-based flexible NO2 chemical sensors. Thin solid films, vol.520, no.16, 5459-5462.

  188. USA, Creative Research Center for Graphene Electronics, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong‐ro, Yuseong‐gu, Daejeon, 305–700, Korea, Creative Research Center for Graphene Electronics, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong‐ro, Yuseong‐gu, Daejeon, 305–700, Korea. Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers. Small, vol.10, no.18, 3685-3691.

  189. Liu, Jie, Li, Shan, Zhang, Bo, Xiao, Yan, Gao, Yuan, Yang, Qiuyue, Wang, Yinglin, Lu, Geyu. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sensors and actuators. B, Chemical, vol.249, 715-724.

  190. Mortazavi Zanjani, Seyedeh Maryam, Sadeghi, Mir Mohammad, Holt, Milo, Chowdhury, Sk. Fahad, Tao, Li, Akinwande, Deji. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Applied physics letters, vol.108, no.3, 033106-.

  191. Inaba, A., Yoo, K., Takei, Y., Matsumoto, K., Shimoyama, I.. Ammonia gas sensing using a graphene field-effect transistor gated by ionic liquid. Sensors and actuators. B, Chemical, vol.195, 15-21.

  192. Iezhokin, I, den Boer, D, Offermans, P, Ridene, M, Elemans, J A A W, Adriaans, G P, Flipse, C F J. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection. Journal of physics, an Institute of Physics journal. Condensed matter, vol.29, no.6, 065001-.

  193. Gautam, M., Jayatissa, A.H.. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-state electronics, vol.78, 159-165.

  194. Karaduman, Irmak, Er, Engin, Çelikkan, Hüseyin, Erk, Nevin, Acar, Selim. Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. Journal of alloys and compounds, vol.722, 569-578.

  195. Yu, Zheying, Wang, Bin, Li, Yong, Kang, Di, Chen, Zhimin, Wu, Yiqun. The effect of rigid phenoxyl substituent on the NH3-sensing properties of tetra-α-(4-tert-butylphenoxyl)-metallophthalocyanine/reduced graphene oxide hybrids. RSC advances, vol.7, no.36, 22599-22609.

  196. Hu, Nantao, Yang, Zhi, Wang, Yanyan, Zhang, Liling, Wang, Ying, Huang, Xiaolu, Wei, Hao, Wei, Liangmin, Zhang, Yafei. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology, vol.25, no.2, 025502-.

  197. Ye, Zongbiao, Jiang, Yadong, Tai, Huiling, Yuan, Zhen. The Investigation of Reduced Graphene Oxide/P3HT Composite Films for Ammonia Detection. Integrated ferroelectrics, vol.154, no.1, 73-81.

  198. Huang, Xiaolu, Hu, Nantao, Gao, Rungang, Yu, Yuan, Wang, Yanyan, Yang, Zhi, Siu-Wai Kong, Eric, Wei, Hao, Zhang, Yafei. Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. Journal of materials chemistry, vol.22, no.42, 22488-22495.

  199. Andre, Rafaela S., Shimizu, Flávio M., Miyazaki, Celina M., Riul Jr, Antonio, Manzani Jr, Danilo, Ribeiro Jr, Sidney J.L., Oliveira Jr, Osvaldo N., Mattoso Jr, Luiz H.C., Correa Jr, Daniel S.. Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sensors and actuators. B, Chemical, vol.238, 795-801.

  200. Wang, J., Singh, B., Park, J.H., Rathi, S., Lee, I.y., Maeng, S., Joh, H.I., Lee, C.H., Kim, G.H.. Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature. Sensors and actuators. B, Chemical, vol.194, 296-302.

  201. Wu, W., Liu, Z., Jauregui, L.A., Yu, Q., Pillai, R., Cao, H., Bao, J., Chen, Y.P., Pei, S.S.. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors and actuators. B, Chemical, vol.150, no.1, 296-300.

  202. Pak, Yusin, Kim, Sang-Mook, Jeong, Huisu, Kang, Chang Goo, Park, Jung Su, Song, Hui, Lee, Ryeri, Myoung, NoSoung, Lee, Byoung Hun, Seo, Sunae, Kim, Jin Tae, Jung, Gun-Young. Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS applied materials & interfaces, vol.6, no.15, 13293-13298.

  203. Johnson, Jason L., Behnam, Ashkan, Pearton, S. J., Ural, Ant. Hydrogen Sensing Using Pd‐Functionalized Multi‐Layer Graphene Nanoribbon Networks. Advanced materials, vol.22, no.43, 4877-4880.

  204. Chung, M.G., Kim, D.H., Seo, D.K., Kim, T., Im, H.U., Lee, H.M., Yoo, J.B., Hong, S.H., Kang, T.J., Kim, Y.H.. Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors and actuators. B, Chemical, vol.169, 387-392.

  205. Shin, Dong Hoon, Lee, Jun Seop, Jun, Jaemoon, An, Ji Hyun, Kim, Sung Gun, Cho, Kyung Hee, Jang, Jyongsik. Flower-like Palladium Nanoclusters Decorated Graphene Electrodes for Ultrasensitive and Flexible Hydrogen Gas Sensing. Scientific reports, vol.5, 12294-.

  206. Lee, Jun Seop, Oh, Jungkyun, Jun, Jaemoon, Jang, Jyongsik. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag. ACS nano, vol.9, no.8, 7783-7790.

  207. Yaqoob, U., Uddin, A.S.M.I., Chung, G.S.. Foldable hydrogen sensor using Pd nanocubes dispersed into multiwall carbon nanotubes-reduced graphene oxide network assembled on nylon filter membrane. Sensors and actuators. B, Chemical, vol.229, 355-361.

  208. Kathiravan, Deepa, Huang, Bohr-Ran, Saravanan, Adhimoorthy. Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors. ACS applied materials & interfaces, vol.9, no.13, 12064-12072.

  209. Esfandiar, A., Ghasemi, S., Irajizad, A., Akhavan, O., Gholami, M.R.. The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. International journal of hydrogen energy, vol.37, no.20, 15423-15432.

  210. Zhang, Zhangyuan, Zou, Xuming, Xu, Lei, Liao, Lei, Liu, Wei, Ho, Johnny, Xiao, Xiangheng, Jiang, Changzhong, Li, Jinchai. Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale, vol.7, no.22, 10078-10084.

  211. Wang, Jianwei, Rathi, Servin, Singh, Budhi, Lee, Inyeal, Joh, Han-Ik, Kim, Gil-Ho. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor. ACS applied materials & interfaces, vol.7, no.25, 13768-13775.

  212. Phan, D.T., Chung, G.S.. Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. International journal of hydrogen energy, vol.39, no.1, 620-629.

  213. Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S., Cheng, M.M.C.. Carbon dioxide gas sensor using a graphene sheet. Sensors and actuators. B, Chemical, vol.157, no.1, 310-313.

  214. Muhammad Hafiz, S., Ritikos, R., Whitcher, T.J., Md. Razib, N., Bien, D.C.S., Chanlek, N., Nakajima, H., Saisopa, T., Songsiriritthigul, P., Huang, N.M., Rahman, S.A.. A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors and actuators. B, Chemical, vol.193, 692-700.

  215. Nemade, K.R., Waghuley, S.A.. Role of defects concentration on optical and carbon dioxide gas sensing properties of Sb2O3/graphene composites. Optical Materials, vol.36, no.3, 712-716.

  216. Nemade, K. R., Waghuley, S. A.. Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian journal of physics, vol.88, no.6, 577-583.

  217. Ren, Yujie, Zhu, Chaofu, Cai, Weiwei, Li, Huifeng, Ji, Hengxing, Kholmanov, Iskandar, Wu, Yaping, Piner, Richard D., Ruoff, Rodney S.. Detection of sulfur dioxide gas with graphene field effect transistor. Applied physics letters, vol.100, no.16, 163114-.

  218. Kumar, Ramesh, Avasthi, D.K., Kaur, Amarjeet. Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sensors and actuators. B, Chemical, vol.242, 461-468.

  219. Zhang, Dongzhi, Liu, Jingjing, Jiang, Chuanxing, Li, Peng, Sun, Yan’e. High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. Sensors and actuators. B, Chemical, vol.245, 560-567.

  220. Cuong, Tran Viet, Pham, Viet Hung, Chung, Jin Suk, Shin, Eun Woo, Yoo, Dae Hwang, Hahn, Sung Hong, Huh, Jeung Soo, Rue, Gi Hong, Kim, Eui Jung, Hur, Seung Hyun, Kohl, Paul A.. Solution-processed ZnO-chemically converted graphene gas sensor. Materials letters, vol.64, no.22, 2479-2482.

  221. Choi, Seon–Jin, Choi, Chanyong, Kim, Sang-Joon, Cho, Hee-Jin, Hakim, Meggie, Jeon, Seokwoo, Kim, Il–Doo. Highly Efficient Electronic Sensitization of Non-oxidized Graphene Flakes on Controlled Pore-loaded WO 3 Nanofibers for Selective Detection of H 2 S Molecules. Scientific reports, vol.5, 8067-.

  222. Zhou, Lisha, Shen, Fangping, Tian, Xike, Wang, Donghong, Zhang, Ting, Chen, Wei. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale, vol.5, no.4, 1564-.

  223. Cho, Sunghun, Lee, Jun Seop, Jun, Jaemoon, Kim, Sung Gun, Jang, Jyongsik. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection. Nanoscale, vol.6, no.24, 15181-15195.

  224. Choi, Seon-Jin, Jang, Bong-Hoon, Lee, Seo-Jin, Min, Byoung Koun, Rothschild, Avner, Kim, Il-Doo. Selective Detection of Acetone and Hydrogen Sulfide for the Diagnosis of Diabetes and Halitosis Using SnO2 Nanofibers Functionalized with Reduced Graphene Oxide Nanosheets. ACS applied materials & interfaces, vol.6, no.4, 2588-2597.

  225. Zhang, Zhenyu, Zou, Rujia, Song, Guosheng, Yu, Li, Chen, Zhigang, Hu, Junqing. Highly aligned SnO2 nanorods on graphene sheets for gas sensors. Journal of materials chemistry, vol.21, no.43, 17360-17365.

  226. Song, Zhilong, Wei, Zeru, Wang, Baocun, Luo, Zhen, Xu, Songman, Zhang, Wenkai, Yu, Haoxiong, Li, Min, Huang, Zhao, Zang, Jianfeng, Yi, Fei, Liu, Huan. Sensitive Room-Temperature H2S Gas Sensors Employing SnO2 Quantum Wire/Reduced Graphene Oxide Nanocomposites. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.4, 1205-1212.

  227. Choi, Seon-Jin, Kim, Sang-Joon, Kim, Il-Doo. Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Materials, vol.8, e315-e315.

  228. Bai, Shouli, Guo, Jun, Sun, Jianhua, Tang, Pinggui, Chen, Aifan, Luo, Ruixian, Li, Dianqing. Enhancement of NO2-Sensing Performance at Room Temperature by Graphene-Modified Polythiophene. Industrial & engineering chemistry research, vol.55, no.19, 5788-5794.

  229. Kumar, Shishir, Kaushik, Swati, Pratap, Rudra, Raghavan, Srinivasan. Graphene on Paper: A Simple, Low-Cost Chemical Sensing Platform. ACS applied materials & interfaces, vol.7, no.4, 2189-2194.

  230. Timmer, Björn, Olthuis, Wouter, Berg, Albert van den. Ammonia sensors and their applications—a review. Sensors and actuators. B, Chemical, vol.107, no.2, 666-677.

  231. Hannon, Ami, Lu, Yijiang, Hong, Haiping, Li, Jing, Meyyappan, M.. Functionalized-Carbon Nanotube Sensor for Room Temperature Ammonia Detection. Sensor letters, vol.12, no.10, 1469-1476.

  232. Han, Jin-Woo, Kim, Beomseok, Li, Jing, Meyyappan, M.. A carbon nanotube based ammonia sensor on cotton textile. Applied physics letters, vol.102, no.19, 193104-.

  233. Han, Jin-Woo, Kim, Beomseok, Li, Jing, Meyyappan, M.. A carbon nanotube based ammonia sensor on cellulose paper. RSC advances, vol.4, no.2, 549-553.

  234. Gandhiraman, Ram P., Singh, Eric, Diaz-Cartagena, Diana C., Nordlund, Dennis, Koehne, Jessica, Meyyappan, M.. Plasma jet printing for flexible substrates. Applied physics letters, vol.108, no.12, 123103-.

  235. Kumar, L., Rawal, I., Kaur, A., Annapoorni, S.. Flexible room temperature ammonia sensor based on polyaniline. Sensors and actuators. B, Chemical, vol.240, 408-416.

  236. Šetka, Milena, Drbohlavová, Jana, Hubálek, Jaromír. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors, vol.17, no.3, 562-.

  237. Yan, Yiran, Zhang, Miluo, Moon, Chung Hee, Su, Heng-Chia, Myung, Nosang V, Haberer, Elaine D. Viral-templated gold/polypyrrole nanopeapods for an ammonia gas sensor. Nanotechnology, vol.27, no.32, 325502-.

  238. Tavoli, F., Alizadeh, N.. Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sensors and actuators. B, Chemical, vol.176, 761-767.

  239. Karmakar, N., Fernandes, R, Jain, Shilpa, Patil, U.V., Shimpi, Navinchandra G., Bhat, N.V., Kothari, D.C.. Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite. Sensors and actuators. B, Chemical, vol.242, 118-126.

  240. Raj, V. Bhasker, Singh, Harpreet, Nimal, A.T., Sharma, M.U., Tomar, Monika, Gupta, Vinay. Distinct detection of liquor ammonia by ZnO/SAW sensor: Study of complete sensing mechanism. Sensors and actuators. B, Chemical, vol.238, 83-90.

  241. Ravichandran, K., Manivasaham, A.. Enhanced ammonia sensing by Sn doped ZnO films prepared by a low-cost fully automated nebulizer spray technique. Journal of materials science. Materials in electronics, vol.28, no.8, 6335-6344.

  242. Zeng, Yi, Lou, Zheng, Wang, Lili, Zou, Bo, Zhang, Tong, Zheng, Weitao, Zou, Guangtian. Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure. Sensors and actuators. B, Chemical, vol.156, no.1, 395-400.

  243. Wang, G., Ji, Y., Huang, X., Yang, X., Gouma, P.-I., Dudley, M.. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.110, no.47, 23777-23782.

  244. Wang, Yinglin, Liu, Jie, Cui, Xiaobiao, Gao, Yuan, Ma, Jian, Sun, Yanfeng, Sun, Peng, Liu, Fengmin, Liang, Xishuang, Zhang, Tong, Lu, Geyu. NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sensors and actuators. B, Chemical, vol.238, 473-481.

  245. Zhang, Jun, Wang, Shurong, Xu, Mijuan, Wang, Yan, Xia, Huijuan, Zhang, Shoumin, Guo, Xianzhi, Wu, Shihua. Polypyrrole-Coated SnO2 Hollow Spheres and Their Application for Ammonia Sensor. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.5, 1662-1665.

  246. Wang, Lili, Lou, Zheng, Zhang, Rui, Zhou, Tingting, Deng, Jianan, Zhang, Tong. Hybrid Co3O4/SnO2 Core–Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas. ACS applied materials & interfaces, vol.8, no.10, 6539-6545.

  247. Rane, Sapana S., Kajale, Deepak A., Arbuj, Sudhir S., Rane, Sunit B., Gosavi, Suresh W.. Hydrogen, ethanol and ammonia gas sensing properties of nano-structured titanium dioxide thick films. Journal of materials science. Materials in electronics, vol.28, no.12, 9011-9016.

  248. Abaker, M, Umar, Ahmad, Baskoutas, S, Dar, G N, Zaidi, S A, Al-Sayari, S A, Al-Hajry, A, Kim, S H, Hwang, S W. A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. Journal of physics. D, applied physics, vol.44, no.42, 425401-.

  249. Huotari, J., Bjorklund, R., Lappalainen, J., Lloyd Spetz, A.. Pulsed Laser Deposited Nanostructured Vanadium Oxide Thin Films Characterized as Ammonia Sensors. Sensors and actuators. B, Chemical, vol.217, 22-29.

  250. Huotari, J., Lappalainen, J., Eriksson, J., Bjorklund, R., Heinonen, E., Miinalainen, I., Puustinen, J., Lloyd Spetz, A.. Synthesis of nanostructured solid-state phases of V7O16 and V2O5 compounds for ppb-level detection of ammonia. Journal of alloys and compounds, vol.675, 433-440.

  251. Li, X., Li, X., Li, Z., Wang, J., Zhang, J.. WS2 nanoflakes based selective ammonia sensors at room temperature. Sensors and actuators. B, Chemical, vol.240, 273-277.

  252. Yan, Huihui, Song, Peng, Zhang, Su, Zhang, Jia, Yang, Zhongxi, Wang, Qi. A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceramics international, vol.42, no.7, 9327-9331.

  253. Feng, Qiuxia, Li, Xiaogan, Wang, Jing, Gaskov, Alexander M.. Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sensors and actuators. B, Chemical, vol.222, 864-870.

  254. Khalaf, A. L., Mohamad, F. S., Rahman, N. Abdul, Lim, H. N., Paiman, S., Yusof, N. A., Mahdi, M. A., Yaacob, M. H.. Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite. Optical materials express, vol.7, no.6, 1858-.

  255. Yu, Caibin, Wu, Yu, Liu, Xiaolei, Fu, Fei, Gong, Yuan, Rao, Yun-Jiang, Chen, Yuanfu. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sensors and actuators. B, Chemical, vol.244, 107-113.

  256. Kumar, Robin, Kushwaha, Neelam, Mittal, Jagjiwan. Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature. Sensors and actuators. B, Chemical, vol.244, 243-251.

  257. Sivalingam, Muthu Mariappan, Balasubramanian, Karthikeyan. Influence of the concentration of reducing agent on gold nanoparticles decorated reduced graphene oxide and its ammonia sensing performance. Applied physics. A, Materials science & processing, vol.123, no.4, 281-.

  258. Sysoev, Vitalii I., Okotrub, Alexander V., Asanov, Igor P., Gevko, Pavel N., Bulusheva, Lyubov G.. Advantage of graphene fluorination instead of oxygenation for restorable adsorption of gaseous ammonia and nitrogen dioxide. Carbon, vol.118, 225-232.

  259. Wang, Yanyan, Zhang, Liling, Hu, Nantao, Wang, Ying, Zhang, Yafei, Zhou, Zhihua, Liu, Yanhua, Shen, Su, Peng, Changsi. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale research letters, vol.9, no.1, 251-251.

  260. Ghosh, R., Singh, A., Santra, S., Ray, S.K., Chandra, A., Guha, P.K.. Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor. Sensors and actuators. B, Chemical, vol.205, 67-73.

  261. Seekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., Wongchoosuk, C.. Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection. Organic electronics, vol.15, no.11, 2971-2981.

  262. Guo, Yunlong, Wang, Ting, Chen, Fanhong, Sun, Xiaoming, Li, Xiaofeng, Yu, Zhongzhen, Wan, Pengbo, Chen, Xiaodong. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale, vol.8, no.23, 12073-12080.

  263. Gavgani, J.N., Hasani, A., Nouri, M., Mahyari, M., Salehi, A.. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sensors and actuators. B, Chemical, vol.229, 239-248.

  264. Duy, Le Thai, Trung, Tran Quang, Dang, Vinh Quang, Hwang, Byeong‐Ung, Siddiqui, Saqib, Son, Il‐Yung, Yoon, Seung Kyun, Chung, Dong June, Lee, Nae‐Eung. Flexible Transparent Reduced Graphene Oxide Sensor Coupled with Organic Dye Molecules for Rapid Dual‐Mode Ammonia Gas Detection. Advanced functional materials, vol.26, no.24, 4329-4338.

  265. Cho, Byungjin, Yoon, Jongwon, Lim, Sung Kwan, Kim, Ah Ra, Kim, Dong-Ho, Park, Sung-Gyu, Kwon, Jung-Dae, Lee, Young-Joo, Lee, Kyu-Hwan, Lee, Byoung Hun, Ko, Heung Cho, Hahm, Myung Gwan. Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. ACS applied materials & interfaces, vol.7, no.30, 16775-16780.

  266. Huang, Da, Yang, Zhi, Li, Xiaolin, Zhang, Liling, Hu, Jing, Su, Yanjie, Hu, Nantao, Yin, Guilin, He, Dannong, Zhang, Yafei. Three-dimensional conductive networks based on stacked SiO2@graphene frameworks for enhanced gas sensing. Nanoscale, vol.9, no.1, 109-118.

  267. Romero, Hugo E, Joshi, Prasoon, Gupta, Awnish K, Gutierrez, Humberto R, Cole, Milton W, Tadigadapa, Srinivas A, Eklund, Peter C. Adsorption of ammonia on graphene. Nanotechnology, vol.20, no.24, 245501-.

  268. Gautam, Madhav, Jayatissa, Ahalapitiya H.. Adsorption kinetics of ammonia sensing by graphene films decorated with platinum nanoparticles. Journal of applied physics, vol.111, no.9, 094317-.

  269. Hubert, T., Boon-Brett, L., Black, G., Banach, U.. Hydrogen sensors - A review. Sensors and actuators. B, Chemical, vol.157, no.2, 329-352.

  270. Gu, Haoshuang, Wang, Zhao, Hu, Yongming. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, vol.12, no.5, 5517-5550.

  271. Bie, L.J., Yan, X.N., Yin, J., Duan, Y.Q., Yuan, Z.H.. Nanopillar ZnO gas sensor for hydrogen and ethanol. Sensors and actuators. B, Chemical, vol.126, no.2, 604-608.

  272. Phan, D.T., Chung, G.S.. Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sensors and actuators. B, Chemical, vol.161, no.1, 341-348.

  273. Varghese, Oomman K., Gong, Dawei, Paulose, Maggie, Ong, Keat G., Grimes, Craig A.. Hydrogen sensing using titania nanotubes. Sensors and actuators. B, Chemical, vol.93, no.1, 338-344.

  274. Mor, Gopal K., Varghese, Oomman K., Paulose, Maggie, Ong, Keat G., Grimes, Craig A.. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin solid films, vol.496, no.1, 42-48.

  275. Han, C.H., Hong, D.W., Kim, I.J., Gwak, J., Han, S.D., Singh, K.C.. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sensors and actuators. B, Chemical, vol.128, no.1, 320-325.

  276. Sens. Transducers Simo A. 143 189 2015 

  277. Zhang, C., Boudiba, A., Navio, C., Bittencourt, C., Olivier, M.G., Snyders, R., Debliquy, M.. Highly sensitive hydrogen sensors based on co-sputtered platinum-activated tungsten oxide films. International journal of hydrogen energy, vol.36, no.1, 1107-1114.

  278. Shen, Y., Wang, W., Fan, A., Wei, D., Liu, W., Han, C., Shen, Y., Meng, D., San, X.. Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies. International journal of hydrogen energy, vol.40, no.45, 15773-15779.

  279. Lange, U., Hirsch, T., Mirsky, V.M., Wolfbeis, O.S.. Hydrogen sensor based on a graphene - palladium nanocomposite. Electrochimica acta, vol.56, no.10, 3707-3712.

  280. Mubeen, S., Zhang, T., Yoo, B., Deshusses, M. A., Myung, N. V.. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.111, no.17, 6321-6327.

  281. Yi, Jaeseok, Lee, Jung Min, Park, Won Il. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sensors and actuators. B, Chemical, vol.155, no.1, 264-269.

  282. Yang, Shulin, Wang, Zhao, Zou, Yanan, Luo, Xiantao, Pan, Xumin, Zhang, Xianghui, Hu, Yongming, Chen, Kansong, Huang, Zhongbing, Wang, Shengfu, Zhang, Kai, Gu, Haoshuang. Remarkably accelerated room-temperature hydrogen sensing of MoO3 nanoribbon/graphene composites by suppressing the nanojunction effects. Sensors and actuators. B, Chemical, vol.248, 160-168.

  283. Yamazoe, N., Shimizu, Y.. Humidity sensors: Principles and applications. Sensors and actuators, vol.10, no.3, 379-398.

  284. Rittersma, Z.M.. Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sensors and actuators. A, Physical, vol.96, no.2, 196-210.

  285. Lee, Chia-Yen, Lee, Gwo-Bin. Humidity Sensors: A Review. Sensor letters, vol.3, no.1, 1-15.

  286. Chen, Zhi, Lu, Chi. Humidity Sensors: A Review of Materials and Mechanisms. Sensor letters, vol.3, no.4, 274-295.

  287. Farahani, Hamid, Wagiran, Rahman, Hamidon, Mohd Nizar. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors, vol.14, no.5, 7881-7939.

  288. Connolly, E.J., O’Halloran, G.M., Pham, H.T.M., Sarro, P.M., French, P.J.. Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications. Sensors and actuators. A, Physical, vol.99, no.1, 25-30.

  289. Connolly, E.J, Pham, H.T.M, Groeneweg, J, Sarro, P.M, French, P.J. Relative humidity sensors using porous SiC membranes and Al electrodes. Sensors and actuators. B, Chemical, vol.100, no.1, 216-220.

  290. Fu, X Q, Wang, C, Yu, H C, Wang, Y G, Wang, T H. Fast humidity sensors based on CeO2 nanowires. Nanotechnology, vol.18, no.14, 145503-.

  291. Zhang, Zuwei, Hu, Chenguo, Xiong, Yufeng, Yang, Rusen, Wang, Zhong Lin. Synthesis of Ba-doped CeO2 nanowires and their application as humidity sensors. Nanotechnology, vol.18, no.46, 465504-.

  292. Qi, Qi, Zhang, Tong, Yu, Qingjiang, Wang, Rui, Zeng, Yi, Liu, Li, Yang, Haibin. Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. Sensors and actuators. B, Chemical, vol.133, no.2, 638-643.

  293. Zhang, Yongsheng, Yu, Ke, Jiang, Desheng, Zhu, Ziqiang, Geng, Haoran, Luo, Laiqiang. Zinc oxide nanorod and nanowire for humidity sensor. Applied surface science, vol.242, no.1, 212-217.

  294. Gu, Leilei, Zheng, Kaibo, Zhou, Ying, Li, Juan, Mo, Xiaoliang, Patzke, Greta R., Chen, Guorong. Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sensors and actuators. B, Chemical, vol.159, no.1, 1-7.

  295. Feng, Ming Hai, Wang, Wen Chuang, Li, Xin Jian. Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array. Journal of alloys and compounds, vol.698, 94-98.

  296. Kuang, Q., Lao, C., Wang, Z. L., Xie, Z., Zheng, L.. High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire. Journal of the American Chemical Society, vol.129, no.19, 6070-6071.

  297. Hsueh, H.T., Hsueh, T.J., Chang, S.J., Hung, F.Y., Tsai, T.Y., Weng, W.Y., Hsu, C.L., Dai, B.T.. CuO nanowire-based humidity sensors prepared on glass substrate. Sensors and actuators. B, Chemical, vol.156, no.2, 906-911.

  298. Wang, L., He, Y., Hu, J., Qi, Q., Zhang, T.. DC humidity sensing properties of BaTiO3 nanofiber sensors with different electrode materials. Sensors and actuators. B, Chemical, vol.153, no.2, 460-464.

  299. Wang, Jing, Lin, Qiuhua, Zhou, Riqiang, Xu, Baokun. Humidity sensors based on composite material of nano-BaTiO3 and polymer RMX. Sensors and actuators. B, Chemical, vol.81, no.2, 248-253.

  300. Yuk, Jaeho, Troczynski, Tom. Sol–gel BaTiO3 thin film for humidity sensors. Sensors and actuators. B, Chemical, vol.94, no.3, 290-293.

  301. Zhuang, Zhuang, Li, Yunfeng, Qi, Duo, Zhao, Chengji, Na, Hui. Novel polymeric humidity sensors based on sulfonated poly (ether ether ketone)s: Influence of sulfonation degree on sensing properties. Sensors and actuators. B, Chemical, vol.242, 801-809.

  302. Park, Kwang-Jin, Gong, Myoung-Seon. A water durable resistive humidity sensor based on rigid sulfonated polybenzimidazole and their properties. Sensors and actuators. B, Chemical, vol.246, 53-60.

  303. Zhang, T., He, Y., Wang, R., Geng, W., Wang, L., Niu, L., Li, X.. Analysis of dc and ac properties of humidity sensor based on polypyrrole materials. Sensors and actuators. B, Chemical, vol.131, no.2, 687-691.

  304. Suri, Komilla, Annapoorni, S., Sarkar, A.K., Tandon, R.P.. Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sensors and actuators. B, Chemical, vol.81, no.2, 277-282.

  305. Su, P.G., Huang, L.N.. Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sensors and actuators. B, Chemical, vol.123, no.1, 501-507.

  306. Han, Jin-Woo, Kim, Beomseok, Li, Jing, Meyyappan, M.. Carbon Nanotube Based Humidity Sensor on Cellulose Paper. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.116, no.41, 22094-22097.

  307. Su, Pi-Guey, Sun, Yi-Lu, Lin, Chu-Chieh. A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sensors and actuators. B, Chemical, vol.115, no.1, 338-343.

  308. Yu, Haihu, Cao, Tong, Zhou, Lingde, Gu, Erdan, Yu, Dingshan, Jiang, Desheng. Layer-by-Layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films. Sensors and actuators. B, Chemical, vol.119, no.2, 512-515.

  309. Yoo, K.P., Lim, L.T., Min, N.K., Lee, M.J., Lee, C.J., Park, C.W.. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sensors and actuators. B, Chemical, vol.145, no.1, 120-125.

  310. Zhang, Dongzhi, Wang, Kai, Tong, Jun, Xia, Bokai. Layer-by-Layer Nanoassembly Fabrication and Humidity Sensing Behaviors of Multi-Walled Carbon Nanotubes/Polyelectrolyte Hybrid Film. Journal of nanoscience and nanotechnology, vol.16, no.7, 6705-6710.

  311. Itoh, Eiji, Yuan, Zihan. Comparative study of all-printed polyimide humidity sensors with single- and multiwalled carbon nanotube gas-permeable top electrodes. Japanese journal of applied physics, vol.56, no.5, 05EC03-.

  312. Yang, Aijun, Gao, Jian, Li, Baichang, Tan, Jiawei, Xiang, Yu, Gupta, Tushar, Li, Lu, Suresh, Shravan, Idrobo, Juan Carlos, Lu, Toh-Ming, Rong, Mingzhe, Koratkar, Nikhil. Humidity sensing using vertically oriented arrays of ReS 2 nanosheets deposited on an interdigitated gold electrode. 2d materials, vol.3, no.4, 045012-.

  313. Zhang, Shao-Lin, Jung, Hyun, Huh, Jeung-Soo, Yu, Joon-Boo, Yang, Woo-Chul. Efficient Exfoliation of MoS2 with Volatile Solvents and Their Application for Humidity Sensor. Journal of nanoscience and nanotechnology, vol.14, no.11, 8518-8522.

  314. Ze, Lu, Yueqiu, Gong, Xujun, Li, Yong, Zhang. MoS2-modified ZnO quantum dots nanocomposite: Synthesis and ultrafast humidity response. Applied surface science, vol.399, 330-336.

  315. Zhang, Dongzhi, Sun, Yan’e, Li, Peng, Zhang, Yong. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. ACS applied materials & interfaces, vol.8, no.22, 14142-14149.

  316. Pawbake, Amit S, Jadkar, Sandesh R, Late, Dattatray J. High performance humidity sensor and photodetector based on SnSe nanorods. Materials research express, vol.3, no.10, 105038-.

  317. Bharatula, Lakshmi Deepika, Erande, Manisha B., Mulla, Imtiaz S., Rout, Chandra Sekhar, Late, Dattatray J.. SnS2nanoflakes for efficient humidity and alcohol sensing at room temperature. RSC advances, vol.6, no.107, 105421-105427.

  318. Erande, Manisha B., Pawar, Mahendra S., Late, Dattatray J.. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets. ACS applied materials & interfaces, vol.8, no.18, 11548-11556.

  319. Late, D.J.. Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.225, 494-503.

  320. Chen, W. H.; Huang, J. Q.; Zhu, C. Y.; Huang, Q. A.InIEEE Sensors;IEEE:Orlando, FL, 2016; pp1-3. 

  321. Miao, Jinshui, Cai, Le, Zhang, Suoming, Nah, Junghyo, Yeom, Junghoon, Wang, Chuan. Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus. ACS applied materials & interfaces, vol.9, no.11, 10019-10026.

  322. Yao, Y., Chen, X., Guo, H., Wu, Z.. Graphene oxide thin film coated quartz crystal microbalance for humidity detection. Applied surface science, vol.257, no.17, 7778-7782.

  323. Yao, Y., Chen, X., Guo, H., Wu, Z., Li, X.. Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure. Sensors and actuators. B, Chemical, vol.161, no.1, 1053-1058.

  324. Lin, W.D., Chang, H.M., Wu, R.J.. Applied novel sensing material graphene/polypyrrole for humidity sensor. Sensors and actuators. B, Chemical, vol.181, 326-331.

  325. Borini, Stefano, White, Richard, Wei, Di, Astley, Michael, Haque, Samiul, Spigone, Elisabetta, Harris, Nadine, Kivioja, Jani, Ryhänen, Tapani. Ultrafast Graphene Oxide Humidity Sensors. ACS nano, vol.7, no.12, 11166-11173.

  326. Li, Y., Deng, C., Yang, M.. Facilely prepared composites of polyelectrolytes and graphene as the sensing materials for the detection of very low humidity. Sensors and actuators. B, Chemical, vol.194, 51-58.

  327. Su, P.G., Chiou, C.F.. Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate. Sensors and actuators. B, Chemical, vol.200, 9-18.

  328. Gao, Ran, Lu, Dan-feng, Cheng, Jin, Jiang, Yi, Jiang, Lang, Qi, Zhi-mei. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sensors and actuators. B, Chemical, vol.222, 618-624.

  329. Alizadeh, Taher, Shokri, Mahrokh. A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid. Sensors and actuators. B, Chemical, vol.222, 728-734.

  330. Lim, Min-Young, Shin, Huiseob, Shin, Dong Myung, Lee, Sang-Soo, Lee, Jong-Chan. Poly(vinyl alcohol) nanocomposites containing reduced graphene oxide coated with tannic acid for humidity sensor. Polymer, vol.84, 89-98.

  331. Ali, Shawkat, Hassan, Arshad, Hassan, Gul, Bae, Jinho, Lee, Chong Hyun. All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity. Carbon, vol.105, 23-32.

  332. Toloman, D., Popa, A., Stan, M., Socaci, C., Biris, A.R., Katona, G., Tudorache, F., Petrila, I., Iacomi, F.. Reduced graphene oxide decorated with Fe doped SnO2 nanoparticles for humidity sensor. Applied surface science, vol.402, 410-417.

  333. Han, Kook In, Kim, Seungdu, Lee, In Gyu, Kim, Jong Pil, Kim, Jung-Ha, Hong, Suck Won, Cho, Byung Jin, Hwang, Wan Sik. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications. Sensors, vol.17, no.2, 407-.

  334. Tao, Jin, Wang, Yanyan, Xiao, Yunjie, Yao, Pei, Chen, Cheng, Zhang, Daihua, Pang, Wei, Yang, Haitao, Sun, Dong, Wang, Zefang, Liu, Jing. One-step exfoliation and functionalization of graphene by hydrophobin for high performance water molecular sensing. Carbon, vol.116, 695-702.

  335. Guo, Huayang, Lan, Changyong, Zhou, Zhifei, Sun, Peihua, Wei, Dapeng, Li, Chun. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale, vol.9, no.19, 6246-6253.

  336. Jin, Han, Huynh, Tan-Phat, Haick, Hossam. Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers via Skin and Breath: Toward Disease Prevention via Wearable Devices. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.16, no.7, 4194-4202.

  337. Li, Wei, Xu, Fujun, Sun, Lijun, Liu, Wei, Qiu, Yiping. A novel flexible humidity switch material based on multi-walled carbon nanotube/polyvinyl alcohol composite yarn. Sensors and actuators. B, Chemical, vol.230, 528-535.

  338. Zhou, Gengheng, Byun, Joon-Hyung, Oh, Youngseok, Jung, Byung-Mun, Cha, Hwa-Jin, Seong, Dong-Gi, Um, Moon-Kwang, Hyun, Sangil, Chou, Tsu-Wei. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. ACS applied materials & interfaces, vol.9, no.5, 4788-4797.

  339. Jang, Juhee, Han, Jeong In. High Performance Cylindrical Capacitor as a Relative Humidity Sensor for Wearable Computing Devices. Journal of the Electrochemical Society : JES, vol.164, no.4, B136-B141.

  340. Yao, Shanshan, Myers, Amanda, Malhotra, Abhishek, Lin, Feiyan, Bozkurt, Alper, Muth, John F., Zhu, Yong. A Wearable Hydration Sensor with Conformal Nanowire Electrodes. Advanced healthcare materials, vol.6, no.6, 1601159-.

  341. Zhong, Ying, Zhang, Fenghua, Wang, Meng, Gardner, Calvin J., Kim, Gunwoo, Liu, Yanju, Leng, Jinsong, Jin, Sungho, Chen, Renkun. Reversible Humidity Sensitive Clothing for Personal Thermoregulation. Scientific reports, vol.7, 44208-.

  342. Chi, Hong, Liu, Yan Jun, Wang, FuKe, He, Chaobin. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film. ACS applied materials & interfaces, vol.7, no.36, 19882-19886.

  343. Zhang, Dongzhi, Tong, Jun, Xia, Bokai. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sensors and actuators. B, Chemical, vol.197, 66-72.

  344. Guo, L., Jiang, H.B., Shao, R.Q., Zhang, Y.L., Xie, S.Y., Wang, J.N., Li, X.B., Jiang, F., Chen, Q.D., Zhang, T., Sun, H.B.. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon, vol.50, no.4, 1667-1673.

  345. Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol-gel film. Sensors and actuators. B, Chemical, vol.216, 467-475.

  346. Su, P.G., Lu, Z.M.. Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sensors and actuators. B, Chemical, vol.211, 157-163.

  347. Xuan, Weipeng, He, Xingli, Chen, Jinkai, Wang, Wenbo, Wang, Xiaozhi, Xu, Yang, Xu, Zhen, Fu, Y. Q., Luo, J. K.. High sensitivity flexible Lamb-wave humidity sensors with a graphene oxide sensing layer. Nanoscale, vol.7, no.16, 7430-7436.

  348. Ma, Ruilong, Tsukruk, Vladimir V.. Seriography‐Guided Reduction of Graphene Oxide Biopapers for Wearable Sensory Electronics. Advanced functional materials, vol.27, no.10, 1604802-.

  349. Trung, Tran Quang, Duy, Le Thai, Ramasundaram, Subramanian, Lee, Nae-Eung. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano research, vol.10, no.6, 2021-2033.

  350. 10.4236/graphene.2016.51001 

  351. Yu, Hyun-Woo, Kim, Hyoung Kyu, Kim, Taewoo, Bae, Kyoung Min, Seo, Sung Min, Kim, Jong-Man, Kang, Tae June, Kim, Yong Hyup. Self-Powered Humidity Sensor Based on Graphene Oxide Composite Film Intercalated by Poly(Sodium 4-Styrenesulfonate). ACS applied materials & interfaces, vol.6, no.11, 8320-8326.

  352. Yuan, Yan, Peng, Bo, Chi, Hang, Li, Cong, Liu, Ren, Liu, Xiaoya. Layer-by-layer inkjet printing SPS:PEDOT NP/RGO composite film for flexible humidity sensors. RSC advances, vol.6, no.114, 113298-113306.

  353. Tripathi, Kumud Malika, Kim, TaeYoung, Losic, Dusan, Tung, Tran Thanh. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon, vol.110, 97-129.

  354. Kybert, Nicholas J., Han, Gang Hee, Lerner, Mitchell B., Dattoli, Eric N., Esfandiar, Ali, Charlie Johnson, A. T.. Scalable arrays of chemical vapor sensors based on DNA-decorated graphene. Nano research, vol.7, no.1, 95-103.

  355. Gavgani, Jaber Nasrollah, Dehsari, Hamed Sharifi, Hasani, Amirhossein, Mahyari, Mojtaba, Shalamzari, Elham Khodabakhshi, Salehi, Alireza, Taromi, Farmarz Afshar. A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) nanocomposite. RSC advances, vol.5, no.71, 57559-57567.

  356. Ge, S., Zheng, H., Sun, Y., Jin, Z., Shan, J., Wang, C., Wu, H., li, M., Meng, F.. Ag/SnO2/graphene ternary nanocomposites and their sensing properties to volatile organic compounds. Journal of alloys and compounds, vol.659, 127-131.

  357. Gautam, Madhav, Jayatissa, Ahalapitiya H.. Detection of organic vapors by graphene films functionalized with metallic nanoparticles. Journal of applied physics, vol.112, no.11, 114326-.

  358. Meng, Fan-Li, Li, Hui-Hua, Kong, Ling-Tao, Liu, Jin-Yun, Jin, Zhen, Li, Wei, Jia, Yong, Liu, Jin-Huai, Huang, Xing-Jiu. Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6nm SnO2 nanoparticles. Analytica chimica acta : an international journal devoted to all branches of analytical chemistry, vol.736, 100-107.

  359. Wang, Chao, Zhu, Junwu, Liang, Shiming, Bi, Huiping, Han, Qiaofeng, Liu, Xiaoheng, Wang, Xin. Reduced graphene oxide decorated with CuO-ZnO hetero-junctions: towards high selective gas-sensing property to acetone. Journal of materials chemistry. A, Materials for energy and sustainability, vol.2, no.43, 18635-18643.

  360. Parmar, Mitesh, Balamurugan, Chandran, Lee, Dong-Weon. PANI and Graphene/PANI Nanocomposite Films — Comparative Toluene Gas Sensing Behavior. Sensors, vol.13, no.12, 16611-16624.

  361. Singkammo, Suparat, Wisitsoraat, Anurat, Sriprachuabwong, Chakrit, Tuantranont, Adisorn, Phanichphant, Sukon, Liewhiran, Chaikarn. Electrolytically Exfoliated Graphene-Loaded Flame-Made Ni-Doped SnO2 Composite Film for Acetone Sensing. ACS applied materials & interfaces, vol.7, no.5, 3077-3092.

  362. Konwer, Surajit, Guha, Ankur Kanti, Dolui, Swapan K.. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. Journal of materials science, vol.48, no.4, 1729-1739.

  363. Liu, Siqi, Chen, Zhang, Zhang, Nan, Tang, Zi-Rong, Xu, Yi-Jun. An Efficient Self-Assembly of CdS Nanowires–Reduced Graphene Oxide Nanocomposites for Selective Reduction of Nitro Organics under Visible Light Irradiation. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.16, 8251-8261.

  364. Konwer, Surajit, Begum, Abida, Bordoloi, Shreemoyee, Boruah, Ratan. Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. Journal of polymer research, vol.24, no.3, 37-.

  365. Teradal, Nagappa L., Marx, Sharon, Morag, Ahiud, Jelinek, Raz. Porous graphene oxide chemi-capacitor vapor sensor array. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.5, no.5, 1128-1135.

  366. Mannoor, Manu S., Tao, Hu, Clayton, Jefferson D., Sengupta, Amartya, Kaplan, David L., Naik, Rajesh R., Verma, Naveen, Omenetto, Fiorenzo G., McAlpine, Michael C.. Graphene-based wireless bacteria detection on tooth enamel. Nature communications, vol.3, 763-.

  367. Broza, Yoav Y, Haick, Hossam. Nanomaterial-Based Sensors for Detection of Disease by Volatile Organic Compounds. Nanomedicine, vol.8, no.5, 785-806.

  368. Nag, Sananda, Duarte, Lisday, Bertrand, Emilie, Celton, Véronique, Castro, Mickaël, Choudhary, Veena, Guegan, Philippe, Feller, Jean-François. Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. Journal of materials chemistry. B, Materials for biology and medicine, vol.2, no.38, 6571-6579.

  369. Tung, Tran Thanh, Castro, Mickael, Kim, Tae Young, Suh, Kwang S., Feller, Jean-François. Graphene quantum resistive sensing skin for the detection of alteration biomarkers. Journal of materials chemistry, vol.22, no.40, 21754-21766.

  370. WANG, Bin, CHANG, Yan-hong, ZHI, Lin-jie. High yield production of graphene and its improved property in detecting heavy metal ions. New carbon materials, vol.26, no.1, 31-35.

  371. Zhang, Tao, Cheng, Zengguang, Wang, Yibing, Li, Zhongjun, Wang, Chenxuan, Li, Yibao, Fang, Ying. Self-Assembled 1-Octadecanethiol Monolayers on Graphene for Mercury Detection. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.10, no.11, 4738-4741.

  372. Wang, Xiaona, Sun, Xiuling, Hu, Ping An, Zhang, Jia, Wang, Lifeng, Feng, Wei, Lei, Shengbin, Yang, Bin, Cao, Wenwu. Colorimetric Sensor Based on Self‐Assembled Polydiacetylene/Graphene‐Stacked Composite Film for Vapor‐Phase Volatile Organic Compounds. Advanced functional materials, vol.23, no.48, 6044-6050.

  373. Zou, Jinfeng, Liu, Zhiguang, Guo, Yujing, Dong, Chuan. Electrochemical sensor for the facile detection of trace amounts of bisphenol A based on cyclodextrin-functionalized graphene/platinum nanoparticles. Analytical methods : advancing methods and applications, vol.9, no.1, 134-140.

  374. Huang, Qingwu, Zeng, Dawen, Li, Huayao, Xie, Changsheng. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale, vol.4, no.18, 5651-.

  375. Ye, Z., Tai, H., Xie, T., Yuan, Z., Liu, C., Jiang, Y.. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sensors and actuators. B, Chemical, vol.223, 149-156.

  376. Zhang, Taiyang, Qin, Lixia, Kang, Shi-zhao, Li, Guodong, Li, Xiangqing. Novel reduced graphene oxide/Ag nanoparticle composite film with sensitive detection activity towards trace formaldehyde. Sensors and actuators. B, Chemical, vol.242, 1129-1132.

  377. Tian, Fangyuan, Li, Hongji, Li, Mingji, Li, Cuiping, Lei, Yingjie, Yang, Baohe. Synthesis of one-dimensional poly(3,4-ethylenedioxythiophene)-graphene composites for the simultaneous detection of hydroquinone, catechol, resorcinol, and nitrite. Synthetic metals, vol.226, 148-156.

  378. Sayago, I., Matatagui, D., Fernandez, M.J., Fontecha, J.L., Jurewicz, I., Garriga, R., Munoz, E.. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta, vol.148, 393-400.

  379. Hu, Nantao, Wang, Yanyan, Chai, Jing, Gao, Rungang, Yang, Zhi, Kong, Eric Siu-Wai, Zhang, Yafei. Gas sensor based on p-phenylenediamine reduced graphene oxide. Sensors and actuators. B, Chemical, vol.163, no.1, 107-114.

  380. Facure, Murilo H.M., Mercante, Luiza A., Mattoso, Luiz H.C., Correa, Daniel S.. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta, vol.167, 59-66.

  381. Xuan, X.; Park, J. Y.InIEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), January 22-26, Las Vegas, NV, 2017;IEEE:New York, NY, 2017; pp636-639. 

  382. Yuan, Kai, Guo-Wang, Peiyao, Hu, Ting, Shi, Lei, Zeng, Rong, Forster, Michael, Pichler, Thomas, Chen, Yiwang, Scherf, Ullrich. Nanofibrous and Graphene-Templated Conjugated Microporous Polymer Materials for Flexible Chemosensors and Supercapacitors. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.21, 7403-7411.

  383. An, Ji Hyun, Park, Seon Joo, Kwon, Oh Seok, Bae, Joonwon, Jang, Jyongsik. High-Performance Flexible Graphene Aptasensor for Mercury Detection in Mussels. ACS nano, vol.7, no.12, 10563-10571.

  384. Su, Bingyuan, Shao, Huilin, Li, Na, Chen, Xiaomei, Cai, Zhixiong, Chen, Xi. A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta, vol.166, 126-132.

  385. 10.1080/00032719.2016.1172079 

  386. Asadian, Elham, Shahrokhian, Saeed, Iraji Zad, Azam, Ghorbani-Bidkorbeh, Fatemeh. Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate. Sensors and actuators. B, Chemical, vol.239, 617-627.

  387. Sakthinathan, Subramanian, Kubendhiran, Subbiramaniyan, Chen, Shen‐Ming, Govindasamy, Mani, Al‐Hemaid, Fahad M.A., Ajmal Ali, M., Tamizhdurai, P., Sivasanker, S.. Metallated porphyrin noncovalent interaction with reduced graphene oxide‐modified electrode for amperometric detection of environmental pollutant hydrazine. Applied organometallic chemistry, vol.31, no.9, e3703-.

  388. Kubendhiran, Subbiramaniyan, Sakthinathan, Subramanian, Chen, Shen-Ming, Tamizhdurai, P., Shanthi, K., Karuppiah, Chelladurai. Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. Journal of colloid and interface science, vol.497, 207-216.

  389. Velmurugan, Murugan, Karikalan, Natarajan, Chen, Shen-Ming, Dai, Zi-Chi. Studies on the influence of β-cyclodextrin on graphene oxide and its synergistic activity to the electrochemical detection of nitrobenzene. Journal of colloid and interface science, vol.490, 365-371.

  390. Sha, Rinky, Puttapati, Sampath Kumar, Srikanth, Vadali VSS, Badhulika, Sushmee. Ultra-sensitive phenol sensor based on overcoming surface fouling of reduced graphene oxide-zinc oxide composite electrode. Journal of electroanalytical chemistry, vol.785, 26-32.

  391. Guo, D., Cai, P., Sun, J., He, W., Wu, X., Zhang, T., Wang, X., Zhang, X.. Reduced-graphene-oxide/metal-oxide p-n heterojunction aerogels as efficient 3D sensing frameworks for phenol detection. Carbon, vol.99, 571-578.

  392. Wiench, Piotr, Grzyb, Bartosz, González, Zoraida, Menéndez, Rosa, Handke, Bartosz, Gryglewicz, Grażyna. pH robust electrochemical detection of 4-nitrophenol on a reduced graphene oxide modified glassy carbon electrode. Journal of electroanalytical chemistry, vol.787, 80-87.

  393. Peleyeju, Moses G., Idris, Azeez O., Umukoro, Eseoghene H., Babalola, Jonathan O., Arotiba, Omotayo A.. Electrochemical Detection of 2,4‐Dichlorophenol on a Ternary Composite Electrode of Diamond, Graphene, and Polyaniline. ChemElectroChem, vol.4, no.5, 1074-1080.

  394. Liang, Y., Yu, L., Yang, R., Li, X., Qu, L., Li, J.. High sensitive and selective graphene oxide/molecularly imprinted polymer electrochemical sensor for 2,4-dichlorophenol in water. Sensors and actuators. B, Chemical, vol.240, 1330-1335.

  395. Kaur, Manjot, Mehta, Surinder K., Kansal, Sushil Kumar. Nitrogen doped graphene quantum dots: Efficient fluorescent chemosensor for the selective and sensitive detection of 2,4,6-trinitrophenol. Sensors and actuators. B, Chemical, vol.245, 938-945.

  396. Zhang, Kaihuan, Hu, Ruifen, Fan, Guokang, Li, Guang. Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors. Sensors and actuators. B, Chemical, vol.243, 721-730.

  397. Zhang, Shouting, Zhang, Dongxu, Zhang, Xuehong, Shang, Denghui, Xue, Zhonghua, Shan, Duoliang, Lu, Xiaoquan. Ultratrace Naked-Eye Colorimetric Detection of Hg2+ in Wastewater and Serum Utilizing Mercury-Stimulated Peroxidase Mimetic Activity of Reduced Graphene Oxide-PEI-Pd Nanohybrids. Analytical chemistry, vol.89, no.6, 3538-3544.

  398. Borthakur, Priyakshree, Darabdhara, Gitashree, Das, Manash R., Boukherroub, Rabah, Szunerits, Sabine. Solvothermal synthesis of CoS/reduced porous graphene oxide nanocomposite for selective colorimetric detection of Hg(II) ion in aqueous medium. Sensors and actuators. B, Chemical, vol.244, 684-692.

  399. Magerusan, Lidia, Socaci, Crina, Coros, Maria, Pogacean, Florina, Rosu, Marcela Corina, Gergely, Stefan, Pruneanu, Stela, Leostean, Cristian, Pana, Ioan Ovidiu. Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb2+ detection. Nanotechnology, vol.28, no.11, 114001-.

  400. Xuan, Wang, Ruiyi, Li, Saiying, Fan, Zaijun, Li, Guangli, Wang, Zhiguo, Gu, Junkang, Liu. D-penicillamine-functionalized graphene quantum dots for fluorescent detection of Fe3+ in iron supplement oral liquids. Sensors and actuators. B, Chemical, vol.243, 211-220.

  401. Zhu, Yun, Pan, Dawei, Hu, Xueping, Han, Haitao, Lin, Mingyue, Wang, Chenchen. An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters. Sensors and actuators. B, Chemical, vol.243, 1-7.

  402. Wen, Y., Wen, W., Zhang, X., Wang, S.. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination. Biosensors & bioelectronics, vol.79, 894-900.

  403. Zuquan Wu, Xiangdong Chen, Shibu Zhu, Zuowan Zhou, Yao Yao, Wei Quan, Bin Liu. Room Temperature Methane Sensor Based on Graphene Nanosheets/Polyaniline Nanocomposite Thin Film. IEEE sensors journal, vol.13, no.2, 777-782.

  404. Furue, R., Koveke, E.P., Sugimoto, S., Shudo, Y., Hayami, S., Ohira, S.I., Toda, K.. Arsine gas sensor based on gold-modified reduced graphene oxide. Sensors and actuators. B, Chemical, vol.240, 657-663.

  405. Fan, L., Hu, Y., Wang, X., Zhang, L., Li, F., Han, D., Li, Z., Zhang, Q., Wang, Z., Niu, L.. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta, vol.101, 192-197.

  406. Zhang, Li, Li, Chun, Liu, Anran, Shi, Gaoquan. Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. Journal of materials chemistry, vol.22, no.17, 8438-8443.

  407. Iftekhar Uddin, A.S.M., Phan, D.T., Chung, G.S.. Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sensors and actuators. B, Chemical, vol.207, no.1, 362-369.

  408. Zhang, Z., Fu, X., Li, K., Liu, R., Peng, D., He, L., Wang, M., Zhang, H., Zhou, L.. One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of Hg(II). Sensors and actuators. B, Chemical, vol.225, 453-462.

  409. Palanisamy, Selvakumar, Thangavelu, Kokulnathan, Chen, Shen-Ming, Velusamy, Vijayalakshmi, Chang, Min-Hui, Chen, Tse-Wei, Al-Hemaid, Fahad M.A., Ali, M. Ajmal, Ramaraj, Sayee Kannan. Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sensors and actuators. B, Chemical, vol.243, 888-894.

  410. Bian, Shiyue, Shen, Chao, Qian, Yuting, Liu, Jiyang, Xi, Fengna, Dong, Xiaoping. Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sensors and actuators. B, Chemical, vol.242, 231-237.

  411. Ensafi, Ali A., Noroozi, Rasool, Zandi–-Atashbar, Navid, Rezaei, B.. Cerium(IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sensors and actuators. B, Chemical, vol.245, 980-987.

  412. Chen, C., Zhao, D., Hu, T., Sun, J., Yang, X.. Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor. Sensors and actuators. B, Chemical, vol.241, 779-788.

  413. Pandey, Ashish, Gurbuz, Yasar, Ozguz, Volkan, Niazi, Javed H., Qureshi, Anjum. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosensors & bioelectronics, vol.91, 225-231.

  414. Er, Engin, Çelikkan, Hüseyin, Erk, Nevin. A novel electrochemical nano-platform based on graphene/platinum nanoparticles/nafion composites for the electrochemical sensing of metoprolol. Sensors and actuators. B, Chemical, vol.238, 779-787.

  415. Kirby, R., Cho, E. J., Gehrke, B., Bayer, T., Park, Y. S., Neikirk, D. P., McDevitt, J. T., Ellington, A. D.. Aptamer-Based Sensor Arrays for the Detection and Quantitation of Proteins. Analytical chemistry, vol.76, no.14, 4066-4075.

  416. Zheng, Gengfeng, Patolsky, Fernando, Cui, Yi, Wang, Wayne U, Lieber, Charles M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature biotechnology, vol.23, no.10, 1294-1301.

  417. Bajaj, Avinash, Miranda, Oscar R., Kim, Ik-Bum, Phillips, Ronnie L., Jerry, D. Joseph, Bunz, Uwe H. F., Rotello, Vincent M.. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proceedings of the National Academy of Sciences of the United States of America, vol.106, no.27, 10912-10916.

  418. Sekitani, Tsuyoshi, Yokota, Tomoyuki, Zschieschang, Ute, Klauk, Hagen, Bauer, Siegfried, Takeuchi, Ken, Takamiya, Makoto, Sakurai, Takayasu, Someya, Takao. Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science, vol.326, no.5959, 1516-1519.

  419. Askim, Jon R., Mahmoudi, Morteza, Suslick, Kenneth S.. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chemical Society reviews, vol.42, no.22, 8649-8682.

  420. Rock, F., Barsan, N., Weimar, U.. Electronic Nose: Current Status and Future Trends. Chemical reviews, vol.108, no.2, 705-725.

  421. Pei, Hao, Li, Jiang, Lv, Min, Wang, Jingyan, Gao, Jimin, Lu, Jianxin, Li, Yongping, Huang, Qing, Hu, Jun, Fan, Chunhai. A Graphene-Based Sensor Array for High-Precision and Adaptive Target Identification with Ensemble Aptamers. Journal of the American Chemical Society, vol.134, no.33, 13843-13849.

  422. Chou, Stanley S., De, Mrinmoy, Luo, Jiayan, Rotello, Vincent M., Huang, Jiaxing, Dravid, Vinayak. P.. Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing. Journal of the American Chemical Society, vol.134, no.40, 16725-16733.

  423. Alizadeh, T., Soltani, L.H.. Reduced graphene oxide-based gas sensor array for pattern recognition of DMMP vapor. Sensors and actuators. B, Chemical, vol.234, 361-370.

  424. Xu, Shenghao, Lu, Xin, Yao, Chenxi, Huang, Fu, Jiang, Hua, Hua, Wenhao, Na, Na, Liu, Haiyan, Ouyang, Jin. A Visual Sensor Array for Pattern Recognition Analysis of Proteins Using Novel Blue-Emitting Fluorescent Gold Nanoclusters. Analytical chemistry, vol.86, no.23, 11634-11639.

  425. Lu, Yuexiang, Liu, Yueying, Zhang, Suge, Wang, Song, Zhang, Sichun, Zhang, Xinrong. Aptamer-Based Plasmonic Sensor Array for Discrimination of Proteins and Cells with the Naked Eye. Analytical chemistry, vol.85, no.14, 6571-6574.

  426. Sun, Shan, Jiang, Kai, Qian, Sihua, Wang, Yuhui, Lin, Hengwei. Applying Carbon Dots-Metal Ions Ensembles as a Multichannel Fluorescent Sensor Array: Detection and Discrimination of Phosphate Anions. Analytical chemistry, vol.89, no.10, 5542-5548.

  427. Wu, Yapei, Liu, Xue, Wu, Qiuhua, Yi, Jie, Zhang, Guolin. Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots. Sensors and actuators. B, Chemical, vol.246, 680-685.

  428. Qu, Jiang, Ge, Yuru, Zu, Baiyi, Li, Yuxiang, Dou, Xincun. Transition‐Metal‐Doped p‐Type ZnO Nanoparticle‐Based Sensory Array for Instant Discrimination of Explosive Vapors. Small, vol.12, no.10, 1369-1377.

  429. Matatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejia-Uriarte, E.V., Ordonez-Romero, C.L., Vazquez-Olmos, A., Saniger, J.M.. Magnonic sensor array based on magnetic nanoparticles to detect, discriminate and classify toxic gases. Sensors and actuators. B, Chemical, vol.240, 497-502.

  430. Meyyappan, M.. Carbon Nanotube‐Based Chemical Sensors. Small, vol.12, no.16, 2118-2129.

  431. Chang, Hucheng, Wu, Xiaojing, Wu, Changyu, Chen, Yu, Jiang, Hui, Wang, Xuemei. Catalytic oxidation and determination of β-NADH using self-assembly hybrid of gold nanoparticles and graphene. The Analyst : An International Journal of Analytical and Bioanalytical Science, vol.136, no.13, 2735-2740.

  432. Yan, Yuting, Liu, Qian, Du, Xiaojiao, Qian, Jing, Mao, Hanping, Wang, Kun. Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Analytica chimica acta : an international journal devoted to all branches of analytical chemistry, vol.853, 258-264.

  433. Hou, Shifeng, Kasner, Marc L., Su, Shujun, Patel, Krutika, Cuellari, Robert. Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.35, 14915-14921.

  434. Wu, P., Shao, Q., Hu, Y., Jin, J., Yin, Y., Zhang, H., Cai, C.. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochimica acta, vol.55, no.28, 8606-8614.

  435. Luo, J., Jiang, S., Zhang, H., Jiang, J., Liu, X.. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Analytica chimica acta : an international journal devoted to all branches of analytical chemistry, vol.709, 47-53.

  436. Kim, Jungkil, Park, Shin-Young, Kim, Sung, Lee, Dae Hun, Kim, Ju Hwan, Kim, Jong Min, Kang, Hee, Han, Joong-Soo, Park, Jun Woo, Lee, Hosun, Choi, Suk-Ho. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors. Scientific reports, vol.6, 31984-.

  437. Esfandiar, A., Irajizad, A., Akhavan, O., Ghasemi, S., Gholami, M.R.. Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. International journal of hydrogen energy, vol.39, no.15, 8169-8179.

  438. Zou, Y., Wang, Q., Xiang, C., Tang, C., Chu, H., Qiu, S., Yan, E., Xu, F., Sun, L.. Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. International journal of hydrogen energy, vol.41, no.11, 5396-5404.

  439. Wang, Chao, Zhu, Junwu, Liang, Shiming, Bi, Huiping, Han, Qiaofeng, Liu, Xiaoheng, Wang, Xin. Reduced graphene oxide decorated with CuO-ZnO hetero-junctions: towards high selective gas-sensing property to acetone. Journal of materials chemistry. A, Materials for energy and sustainability, vol.2, no.43, 18635-18643.

  440. Wen, Yanqin, Peng, Cheng, Li, Di, Zhuo, Lin, He, Shijiang, Wang, Lihua, Huang, Qing, Xu, Qing-Hua, Fan, Chunhai. Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. Chemical communications : Chem comm, vol.47, no.22, 6278-6280.

  441. Zhao, Xu-Hua, Kong, Rong-Mei, Zhang, Xiao-Bing, Meng, Hong-Min, Liu, Wei-Na, Tan, Weihong, Shen, Guo-Li, Yu, Ru-Qin. Graphene–DNAzyme Based Biosensor for Amplified Fluorescence “Turn-On” Detection of Pb2+ with a High Selectivity. Analytical chemistry, vol.83, no.13, 5062-5066.

  442. Li, M., Zhou, X., Guo, S., Wu, N.. Detection of lead (II) with a ''turn-on'' fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosensors & bioelectronics, vol.43, 69-74.

  443. Zhao, Z.Q., Chen, X., Yang, Q., Liu, J.H., Huang, X.J.. Beyond the selective adsorption of polypyrrole-reduced graphene oxide nanocomposite toward Hg2+: Ultra-sensitive and -selective sensing Pb2+ by stripping voltammetry. Electrochemistry communications, vol.23, 21-24.

  444. Wei, Weili, Xu, Can, Ren, Jinsong, Xu, Bailu, Qu, Xiaogang. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chemical communications : Chem comm, vol.48, no.9, 1284-1286.

  445. Sadak, Omer, Sundramoorthy, Ashok K., Gunasekaran, Sundaram. Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosensors & bioelectronics, vol.89, no.1, 430-436.

  446. Mao, Shun, Cui, Shumao, Lu, Ganhua, Yu, Kehan, Wen, Zhenhai, Chen, Junhong. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. Journal of materials chemistry, vol.22, no.22, 11009-11013.

  447. Wei, Yan, Gao, Chao, Meng, Fan-Li, Li, Hui-Hua, Wang, Lun, Liu, Jin-Huai, Huang, Xing-Jiu. SnO2/Reduced Graphene Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II): An Interesting Favorable Mutual Interference. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.116, no.1, 1034-1041.

  448. Zhang, D., Liu, J., Jiang, C., Liu, A., Xia, B.. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sensors and actuators. B, Chemical, vol.240, 55-65.

  449. Zhu, Miao, Li, Xinming, Chung, Sunki, Zhao, Liyun, Li, Xiao, Zang, Xiaobei, Wang, Kunlin, Wei, Jinquan, Zhong, Minlin, Zhou, Kun, Xie, Dan, Zhu, Hongwei. Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon, vol.84, 138-145.

  450. Yuan, Wenjing, Huang, Liang, Zhou, Qinqin, Shi, Gaoquan. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS applied materials & interfaces, vol.6, no.19, 17003-17008.

  451. Li, Xiaogan, Zhao, Yangyang, Wang, Xueyan, Wang, Jing, Gaskov, Alexander M., Akbar, S.A.. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensors and actuators. B, Chemical, vol.230, 330-336.

  452. Panda, Dipankar, Nandi, Anupam, Datta, Swapan K., Saha, Hiranmay, Majumdar, Sanhita. Selective detection of carbon monoxide (CO) gas by reduced graphene oxide (rGO) at room temperature. RSC advances, vol.6, no.53, 47337-47348.

  453. Yu, Chunmeng, Guo, Yunlong, Liu, Hongtao, Yan, Ni, Xu, Zhiyan, Yu, Gui, Fang, Yu, Liu, Yunqi. Ultrasensitive and selective sensing of heavy metal ions with modified graphene. Chemical communications : Chem comm, vol.49, no.58, 6492-6494.

  454. Kumar, Sandeep, Bhanjana, Gaurav, Dilbaghi, Neeraj, Kumar, Rajeev, Umar, Ahmad. Fabrication and characterization of highly sensitive and selective arsenic sensor based on ultra-thin graphene oxide nanosheets. Sensors and actuators. B, Chemical, vol.227, 29-34.

  455. Soni, Mahesh, Arora, Tarun, Khosla, Robin, Kumar, Pawan, Soni, Ajay, Sharma, Satinder K.. Integration of Highly Sensitive Oxygenated Graphene With Aluminum Micro-Interdigitated Electrode Array Based Molecular Sensor for Detection of Aqueous Fluoride Anions. IEEE sensors journal, vol.16, no.6, 1524-1531.

  456. Wang, Ying, Lu, Jin, Tang, Longhua, Chang, Haixin, Li, Jinghong. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Analytical chemistry, vol.81, no.23, 9710-9715.

  457. Dinesh, B., Veeramani, V., Chen, S.M., Saraswathi, R.. In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. Journal of electroanalytical chemistry, vol.786, 169-176.

  458. Tao, Y., Auguste, D.T.. Array-based identification of triple-negative breast cancer cells using fluorescent nanodot-graphene oxide complexes. Biosensors & bioelectronics, vol.81, 431-437.

  459. Gao, Zhaoli, Kang, Hojin, Naylor, Carl H., Streller, Frank, Ducos, Pedro, Serrano, Madeline D., Ping, Jinglei, Zauberman, Jonathan, Rajesh, Carpick, Robert W., Wang, Ying-Jun, Park, Yung Woo, Luo, Zhengtang, Ren, Li, Johnson, A. T. Charlie. Scalable Production of Sensor Arrays Based on High-Mobility Hybrid Graphene Field Effect Transistors. ACS applied materials & interfaces, vol.8, no.41, 27546-27552.

  460. Gao, Lingfeng, Ju, Li, Cui, Hua. Chemiluminescent and fluorescent dual-signal graphene quantum dots and their application in pesticide sensing arrays. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.5, no.31, 7753-7758.

  461. Mohamed, Mona A., Atty, Shimaa A., Salama, Nahla N., Banks, Craig E.. Highly Selective Sensing Platform Utilizing Graphene Oxide and Multiwalled Carbon Nanotubes for the Sensitive Determination of Tramadol in the Presence of Co‐Formulated Drugs. Electroanalysis, vol.29, no.4, 1038-1048.

  462. Elçin, Serkan, Yola, Mehmet Lütfi, Eren, Tanju, Girgin, Burcu, Atar, Necip. Highly Selective and Sensitive Voltammetric Sensor Based on Ruthenium Nanoparticle Anchored Calix[4]amidocrown‐5 Functionalized Reduced Graphene Oxide: Simultaneous Determination of Quercetin, Morin and Rutin in Grape Wine. Electroanalysis, vol.28, no.3, 611-619.

  463. Fu, Chong, Li, Mingji, Li, Hongji, Li, Cuiping, Qu, Changqing, Yang, Baohe. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application. Materials science & engineering. C, Materials for biological applications, vol.72, 425-432.

  464. Adachi, Naoya, Yoshinari, Mariko, Suzuki, Eri, Okada, Mari. Oligo(p-phenylene ethynylene) with Cyanoacrylate Terminal Groups and Graphene Composite as Fluorescent Chemical Sensor for Cysteine. Journal of fluorescence, vol.27, no.4, 1449-1456.

  465. Bi, Hengchang, Yin, Kuibo, Xie, Xiao, Ji, Jing, Wan, Shu, Sun, Litao, Terrones, Mauricio, Dresselhaus, Mildred S.. Ultrahigh humidity sensitivity of graphene oxide. Scientific reports, vol.3, 2714-.

  466. Zhou, Y., Jiang, Y., Xie, T., Tai, H., Xie, G.. A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sensors and actuators. B, Chemical, vol.203, 135-142.

  467. Sun, Jian, Muruganathan, Manoharan, Mizuta, Hiroshi. Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Science advances, vol.2, no.4, e1501518-.

  468. Muruganathan, Manoharan, Sun, Jian, Imamura, Tomonori, Mizuta, Hiroshi. Electrically Tunable van der Waals Interaction in Graphene–Molecule Complex. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.15, no.12, 8176-8180.

  469. Takeuchi, Kaori, Yamamoto, Susumu, Hamamoto, Yuji, Shiozawa, Yuichiro, Tashima, Keiichiro, Fukidome, Hirokazu, Koitaya, Takanori, Mukai, Kozo, Yoshimoto, Shinya, Suemitsu, Maki, Morikawa, Yoshitada, Yoshinobu, Jun, Matsuda, Iwao. Adsorption of CO2 on Graphene: A Combined TPD, XPS, and vdW-DF Study. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.121, no.5, 2807-2814.

  470. Wang, Shiwei, Chen, Zhuo, Umar, Ahmad, Wang, Yao, Tian, Tong, Shang, Ying, Fan, Yuzun, Qi, Qi, Xu, Dongmei. Supramolecularly Modified Graphene for Ultrafast Responsive and Highly Stable Humidity Sensor. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.51, 28640-28647.

  471. Alizadeh, T., Hamedsoltani, L.. Managing of gas sensing characteristic of a reduced graphene oxide based gas sensor by the change in synthesis condition: A new approach for electronic nose design. Materials chemistry and physics, vol.183, 181-190.

  472. Choi, Tae Young, Hwang, Byeong-Ung, Kim, Bo-Yeong, Trung, Tran Quang, Nam, Yun Hyoung, Kim, Do-Nyun, Eom, Kilho, Lee, Nae-Eung. Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes. ACS applied materials & interfaces, vol.9, no.21, 18022-18030.

  473. Du, Donghe, Li, Pengcheng, Ouyang, Jianyong. Graphene coated nonwoven fabrics as wearable sensors. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.4, no.15, 3224-3230.

  474. Lee, Sang Woo, Park, Jung Jin, Park, Byung Hyun, Mun, Sung Cik, Park, Yong Tae, Liao, Kin, Seo, Tae Seok, Hyun, Woo Jin, Park, O Ok. Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions. ACS applied materials & interfaces, vol.9, no.12, 11176-11183.

  475. Yun, Junyeong, Lim, Yein, Jang, Gwon Neung, Kim, Daeil, Lee, Seung-Jung, Park, Heun, Hong, Soo Yeong, Lee, Geumbee, Zi, Goangseup, Ha, Jeong Sook. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano energy, vol.19, 401-414.

  476. Yun, Yong Ju, Hong, Won G., Kim, Do Yeob, Kim, Hae Jin, Jun, Yongseok, Lee, Hyung-Kun. E-textile gas sensors composed of molybdenum disulfide and reduced graphene oxide for high response and reliability. Sensors and actuators. B, Chemical, vol.248, 829-835.

  477. Kim, Hyoun Woo, Kwon, Yong Jung, Mirzaei, Ali, Kang, Sung Yong, Choi, Myung Sik, Bang, Jae Hoon, Kim, Sang Sub. Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors. Sensors and actuators. B, Chemical, vol.249, 590-601.

  478. Zhao, Songfang, Li, Jinhui, Cao, Duxia, Zhang, Guoping, Li, Jia, Li, Kui, Yang, Yang, Wang, Wei, Jin, Yufeng, Sun, Rong, Wong, Ching-Ping. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS applied materials & interfaces, vol.9, no.14, 12147-12164.

  479. Potyrailo, Radislav A.. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chemical reviews, vol.116, no.19, 11877-11923.

  480. Swan, Melanie. Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. Journal of sensor and actuator networks, vol.1, no.3, 217-253.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로