$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Phosphate alleviates arsenate toxicity by altering expression of phosphate transporters in the tolerant barley genotypes

Ecotoxicology and environmental safety, v.147, 2018년, pp.832 - 839  

Zvobgo, Gerald (Key Laboratory of Crop Germplasm Resource, College of Agriculture and Biotechnology, Department of Agronomy, Zhejiang University) ,  LwalabaWaLwalaba, Jonas ,  Sagonda, Tichaona ,  Mutemachani Mapodzeke, James ,  Muhammad, Noor ,  Haider Shamsi, Imran ,  Zhang, Guoping

Abstract AI-Helper 아이콘AI-Helper

Abstract The contribution of the phosphate transporters (PHTs) in uptake of arsenate (As5+) and phosphate (P) is a widely recognized mechanism. Here we investigated how P regulates the uptake of As5+ and the subsequent effects on growth and relative expression of PHTs. The study was conducted on 3 ...

주제어

참고문헌 (45)

  1. J. Hazard. Mater. Ahmad 217-218 141 2012 10.1016/j.jhazmat.2012.03.005 Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers 

  2. Annu. Rev. Plant Physiol. Plant Mol. Biol. Asada 50 601 1999 10.1146/annurev.arplant.50.1.601 The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons 

  3. Plant Physiol. Biochem. Beguma 104 266 2016 10.1016/j.plaphy.2016.03.034 Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.) 

  4. Biochemistry Byers 18 2471 1979 10.1021/bi00579a006 Interaction of phosphate analogues with glyceraldehyde-3-phosphate dehydrogenase 

  5. Plant Cell Catarecha 19 1123 2007 10.1105/tpc.106.041871 A mutant of the arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation 

  6. Chemosphere Chakrabarty 74 5 688 2009 10.1016/j.chemosphere.2008.09.082 Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings 

  7. Chaney 74 140 1989 Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains 

  8. New Phytol. DiTusa 209 2 762 2016 10.1111/nph.13472 A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter 

  9. Adv. Inorg. Chem. Dixon 44 191 1997 10.1016/S0898-8838(08)60131-2 The biochemical action of arsonic acids especially as phosphate analogues 

  10. Ecotoxicology Farooq 25 350 2016 10.1007/s10646-015-1594-6 Subcellular distribution, modulation of antioxidant and stress related genes response to arsenic in Brassica napus L 

  11. Acta Crystallogr. Faehnle D60 2320 2004 Structural basis for discrimination between oxyanion substrates or inhibitors in aspartate-β-semialdehyde dehydrogenase 

  12. Aquat. Bot. Geng 8 321 2005 10.1016/j.aquabot.2005.07.003 Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations 

  13. Environ. Sci. Pollut. Res. Grifoni 22 2423 2015 10.1007/s11356-014-2811-1 Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea 

  14. New Phytol. Guo 177 889 2008 10.1111/j.1469-8137.2007.02331.x Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters 

  15. J. Hydrol. He 492 79 2013 10.1016/j.jhydrol.2013.04.007 A review of arsenic presence in China drinking water 

  16. Plant Physiol. Huang 156 3 1217 2011 10.1104/pp.111.178459 Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley 

  17. Kabata Pendias 53 2011 Trace Elements in Soils and Plants 

  18. J. Plant Growth Regul. Karimi 32 4 823 2013 10.1007/s00344-013-9350-8 Effects of arsenic on growth, photosynthetic activity, and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv 

  19. Inorg. Chem. Kish 38 818 1999 10.1021/ic981082j Oxyanion specificity of aspartate-β-semialdehyde dehydrogenase 

  20. J. Exp. Bot. Meharg 43 519 1992 10.1093/jxb/43.4.519 Suppression of the high-affinity phosphate uptake system-a mechanism of arsenate tolerance in Holcus lanatus L 

  21. Proc. Natl. Acad. Sci. USA Misson 102 11934 2005 10.1073/pnas.0505266102 A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation 

  22. Plant Mol. Biol. Misson 55 727 2004 10.1007/s11103-004-1965-5 Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants 

  23. Plant J. Mudge 31 341 2002 10.1046/j.1365-313X.2002.01356.x Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis 

  24. A Compr. Study Plant Mol. Biol. Muehe 85 301 2014 10.1007/s11103-014-0186-9 Are rice (Oryza sativa L.) phosphate transporters regulated similarly by phosphate and arsenate? 

  25. Front. Plant Sci. Nussaume 2 83 2011 10.3389/fpls.2011.00083 Phosphate import in plants: focus on the PHT1 transporters 

  26. Plant Physiol. Biochem. Pandey 111 144 2016 10.1016/j.plaphy.2016.11.026 Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: a comparison of two Brassica cultivars 

  27. Proc. Natl. Acad. Sci. USA Paszkowski 99 13324 2002 10.1073/pnas.202474599 Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis 

  28. Environ. Exp. Bot. Puckett 75 248 2012 10.1016/j.envexpbot.2011.07.008 Differential expression of genes encoding phosphate transporters contributes to arsenic tolerance and accumulation in shrub willow (Salix spp.) 

  29. Plant Mol. Biol. Rae 53 27 2003 10.1023/B:PLAN.0000009259.75314.15 Characterization of two phosphate transporters from barley: evidence for diverse function and kinetic properties among members of Pht1 family 

  30. Acta Physiol. Plant Rapacz 34 1723 2012 10.1007/s11738-012-0967-1 Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age 

  31. Nat. Protoc. Schmittgen 3 6 1101 2008 10.1038/nprot.2008.73 Analyzing real-time PCR data by the comparative CT method 

  32. Asian J. Ecotoxicol. Shi 3 4 403 2008 Effects of Cd spiking on cell ultrastructure of root and leaf of two rice cultivars 

  33. Front. Plant Sci. Singh 6 340 2015 10.3389/fpls.2015.00340 Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.) 

  34. Smith 145 1999 Plant Nutrition: Molecular Biology and Genetics Regulation of expression of genes encoding phosphate transporters in barley roots 

  35. Plant Physiol. Su 167 4 1579 2015 10.1104/pp.114.253799 WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis 

  36. Front. Plant Sci. Teng 8 543 2017 10.3389/fpls.2017.00543 Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat 

  37. Front. Physiol. Uroic 3 55 2012 10.3389/fphys.2012.00055 Arsenate impact on the metabolite profile, production, and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.) 

  38. Ecotox. Environ. Safe Vromman 139 344 2017 10.1016/j.ecoenv.2017.01.049 Phosphorus deficiency modifies As translocation in the halophyte plant species Atriplex atacamensis 

  39. J. Bacteriol. Willsky 144 356 1980 10.1128/JB.144.1.356-365.1980 Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli 

  40. Plant Physiol. Wu 157 498 2011 10.1104/pp.111.178921 Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice 

  41. New Phytol. Yu 195 1 97 2012 10.1111/j.1469-8137.2012.04154.x Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa) 

  42. Sci. Rep. Zheng 7 41236 2017 10.1038/srep41236 Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress 

  43. Environ. Sci. Pollut. Res. Zhou 2017 The effects of lead stress on photosynthetic function and chloroplast ultrastructure of Robinia pseudoacacia seedlings 

  44. Ann. Bot. Zhu 98 3 631 2006 10.1093/aob/mcl139 Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines 

  45. Environ. Toxicol. Chem. Zvobgo 34 1 45 2015 10.1002/etc.2776 The effects of phosphate on arsenic uptake and toxicity alleviation in tobacco genotypes with differing arsenic tolerance 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트