$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement

Metabolic engineering, v.44, 2017년, pp.313 - 324  

Wu, Junjun (College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China) ,  Zhang, Xia (College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China) ,  Zhou, Peng (College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China) ,  Huang, Jiaying (College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China) ,  Xia, Xiudong (Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China) ,  Li, Wei (College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China) ,  Zhou, Ziyu (College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China) ,  Chen, Yue (College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, China) ,  Liu, Yinghao (College of Food Science and Techn) ,  Dong, Mingsheng

Abstract AI-Helper 아이콘AI-Helper

Abstract Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains ...

주제어

참고문헌 (36)

  1. Science Ajikumar 330 70 2010 10.1126/science.1191652 Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli 

  2. Metab. Eng. Balzer 20 1 2013 10.1016/j.ymben.2013.07.005 Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase 

  3. Metab. Eng. Berrios-Rivera 4 217 2002 10.1006/mben.2002.0227 Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase 

  4. Nat. Commun. Blazeck 5 3131 2014 10.1038/ncomms4131 Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production 

  5. Anal. Biochem. Bradford 72 248 1976 10.1016/0003-2697(76)90527-3 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding 

  6. PLoS Genet. Chou 11 26 2015 10.1371/journal.pgen.1005007 Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production 

  7. Metab. Eng. Clomburg 28 202 2015 10.1016/j.ymben.2015.01.007 Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids 

  8. Science Clomburg 355 11 2017 10.1126/science.aag0804 Industrial biomanufacturing: the future of chemical production 

  9. ACS Synth. Biol. Clomburg 1 541 2012 10.1021/sb3000782 A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle 

  10. Nature Dellomonaco 476 2011 10.1038/nature10333 Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals 

  11. Nat. Commun. Gajewski 8 14650 2017 10.1038/ncomms14650 Engineering fungal de novo fatty acid synthesis for short chain fatty acid production 

  12. Appl. Environ. Microbiol. Kim 70 1238 2004 10.1128/AEM.70.2.1238-1241.2004 Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli 

  13. J. Ind. Microbiol. Biotechnol. Kim 42 465 2015 10.1007/s10295-015-1589-6 Synthesis of medium-chain length (C6-C10) fuels and chemicals via beta-oxidation reversal in Escherichia coli 

  14. Appl. Microbiol. Biotechnol. Lee 97 2761 2013 10.1007/s00253-013-4750-z Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation 

  15. ACS Synth. Biol. Lian 4 332 2015 10.1021/sb500243c Reversal of the beta-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals 

  16. Metab. Eng. Liu 38 86 2016 10.1016/j.ymben.2016.06.006 C-13 Metabolic Flux Analysis of acetate conversion to lipids by Yarrowia lipolytica 

  17. Methods Livak 25 402 2001 10.1006/meth.2001.1262 Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method 

  18. Proteomics Mansour 9 4714 2009 10.1002/pmic.200900161 A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica 

  19. Microb. Cell. Fact. Meng 15 1 2016 10.1186/s12934-016-0536-1 High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli 

  20. Nucleic Acids Res. Nakashima 37 e103 2009 10.1093/nar/gkp498 Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli 

  21. Nat. Biotechnol. Qiao 35 173 2017 10.1038/nbt.3763 Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism 

  22. Appl. Microbiol. Biotechnol. Rutter 99 7359 2015 10.1007/s00253-015-6764-1 Engineering Yarrowia lipolytica for production of medium-chain fatty acids 

  23. Metab. Eng. Sherkhanov 25 1 2014 10.1016/j.ymben.2014.06.003 Improving the tolerance of Escherichia coli to medium-chain fatty acid production 

  24. Metab. Eng. Shiba 9 160 2007 10.1016/j.ymben.2006.10.005 Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids 

  25. Microb. Cell. Fact. Tan 16 1 2017 10.1186/s12934-017-0650-8 Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF 

  26. Metab. Eng. van Rossum 36 99 2016 10.1016/j.ymben.2016.03.006 Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing 

  27. Appl. Environ. Microbiol. Vick 81 1406 2015 10.1128/AEM.03521-14 Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of the beta-oxidation cycle 

  28. Appl. Environ. Microbiol. Wang 82 7176 2016 10.1128/AEM.02178-16 Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration 

  29. Sci. Rep. Wu 5 14 2015 Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli 

  30. J. Biotechnol. Wu 231 183 2016 10.1016/j.jbiotec.2016.06.007 Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin 

  31. Metab. Eng. Wu 41 115 2017 10.1016/j.ymben.2017.03.012 A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli 

  32. Nat. Commun. Xu 4 1409 2013 10.1038/ncomms2425 Modular optimization of multi-gene pathways for fatty acids production in E. coli 

  33. Proc. Natl. Acad. Sci. USA Xu 113 10848 2016 10.1073/pnas.1607295113 Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals 

  34. Biotechnol. Bioeng. Zhang 113 2587 2016 10.1002/bit.26021 Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast 

  35. ACS Synth. Biol. Zhou 6 1065 2017 10.1021/acssynbio.7b00006 Obtaining a panel of cascade promoter-5 '-UTR complexes in Escherichia coli 

  36. Nat. Commun. Zhou 7 11709 2016 10.1038/ncomms11709 Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로