$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Niobium doped zinc oxide nanorods as an electron transport layer for high-performance inverted polymer solar cells

Journal of colloid and interface science, v.512, 2018년, pp.548 - 554  

Naz, Hina (Corresponding author.) ,  Ali, Rai Nauman ,  Liu, Qing ,  Yang, Shangfeng ,  Xiang, Bin

Abstract AI-Helper 아이콘AI-Helper

Abstract The wet chemical synthesis, characterization and applications of Nb doped ZnO nanorods in bulk heterojunction inverted polymer solar cells are presented in this paper. Zn1−xNbxO with x ranging from 0.01 to 0.07 were successfully synthesized using a novel facile solution-processed wet...

주제어

참고문헌 (44)

  1. Energy Technol. Angmo 3 7 774 2015 10.1002/ente.201500086 Over 2 years of outdoor operational and storage stability of ITO-free. Fully roll-to-roll fabricated polymer solar cell modules 

  2. Renew. Sustain. Energy Rev. Sun 43 973 2015 10.1016/j.rser.2014.11.040 Recent development of graphene materials applied in polymer solar cell 

  3. Sol. Energy Mater. Sol. Cells Oseni 160 241 2017 10.1016/j.solmat.2016.10.036 Properties of functional layers in inverted thin film organic solar cells 

  4. Appl. Phys. Lett. Bao 69 26 4108 1996 10.1063/1.117834 Soluble and processable regioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility 

  5. Appl. Phys. Lett. Li 88 25 253503 2006 10.1063/1.2212270 Efficient inverted polymer solar cells 

  6. Thin Solid Films Glatthaar 491 1 298 2005 10.1016/j.tsf.2005.06.006 Organic solar cells using inverted layer sequence 

  7. Org. Electron. Hau 10 4 719 2009 10.1016/j.orgel.2009.02.019 Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells 

  8. Sol. Energy Mater. Solar Cells Krebs 93 4 394 2009 10.1016/j.solmat.2008.10.004 Fabrication and processing of polymer solar cells: a review of printing and coating techniques 

  9. Prog. Polym. Sci. Scharber 38 12 1929 2013 10.1016/j.progpolymsci.2013.05.001 Efficiency of bulk-heterojunction organic solar cells 

  10. Electronics Lattante 3 1 132 2014 10.3390/electronics3010132 Electron and hole transport layers: their use in inverted bulk heterojunction polymer solar cells 

  11. Chem. Commun. Zhang 3 262 2002 10.1039/b108863g A simple route towards tubular ZnO 

  12. Chem. Mater. Zhang 14 10 4172 2002 10.1021/cm020077h Control of ZnO morphology via a simple solution route 

  13. Cryst. Growth Des. Zhang 4 2 309 2004 10.1021/cg034142r Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system 

  14. Adv. Mater. You 24 38 5267 2012 10.1002/adma.201201958 Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells 

  15. Sol. Energy Mater. Sol. Cells Voroshazi 95 5 1303 2011 10.1016/j.solmat.2010.09.007 Long-term operational lifetime and degradation analysis of P3HT: PCBM photovoltaic cells 

  16. 10.1186/1556-276X-9-150 H.P. Kim, A.R. bin Mohd Yusoff, H.M. Kim, H.J. Lee, G.J. Seo, J. Jang, Inverted organic photovoltaic device with a new electron transport layer, Nanoscale Res. Lett. 9(1) 2014 1-9. 

  17. Appl. Phys. Lett. Liu 103 4 043309 2013 10.1063/1.4816786 Efficient and ultraviolet durable inverted organic solar cells based on an aluminum-doped zinc oxide transparent cathode 

  18. Sol. Energy Mater. Sol. Cells Hu 117 610 2013 10.1016/j.solmat.2013.07.015 Inverted polymer solar cells with a boron-doped zinc oxide layer deposited by metal organic chemical vapor deposition 

  19. J. Mater. Chem. C Thambidurai 1 48 8161 2013 10.1039/c3tc31650e High performance inverted organic solar cells with solution processed Ga-doped ZnO as an interfacial electron transport layer 

  20. Adv. Func. Mater. Olson 17 2 264 2007 10.1002/adfm.200600215 Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells 

  21. Org. Electron. Lu 17 364 2015 10.1016/j.orgel.2014.12.032 Performance enhancement in inverted polymer solar cells incorporating ultrathin Au and LiF modified ZnO electron transporting interlayer 

  22. ACS Appl. Mater. Interfaces Jiang 9 11 9576 2017 10.1021/acsami.6b14147 Niobium-doped (001)-dominated anatase TiO2 nanosheets as photoelectrode for efficient dye-sensitized solar cells 

  23. J. Sol-Gel. Sci. Technol. Bakhshayesh 77 1 228 2016 10.1007/s10971-015-3848-4 Improved short-circuit current density of dye-sensitized solar cells aided by Sr, Nb co-doped TiO2 spherical particles derived from sol-gel route 

  24. Ceram. Int. Satheesan 43 11 8098 2017 10.1016/j.ceramint.2017.03.132 Acceptor-defect mediated room temperature ferromagnetism in (Mn2+, Nb5+) co-doped ZnO nanoparticles 

  25. J. Alloy. Compd. Kim 698 77 2017 10.1016/j.jallcom.2016.11.377 Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties 

  26. Appl. Surf. Sci. Lin 255 13 6460 2009 10.1016/j.apsusc.2009.01.002 Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition 

  27. Angew. Chem. Int. Ed. Pacholski 41 7 1188 2002 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5 Self-assembly of ZnO: from nanodots to nanorods 

  28. Nanotechnology Cao 17 15 3632 2006 10.1088/0957-4484/17/15/002 Shape-and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature 

  29. Adv. Func. Mater. Chen 2016 Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement 

  30. J. Mater. Chem. A Zhen 4 21 8072 2016 10.1039/C6TA02016J An ethanolamine-functionalized fullerene as an efficient electron transport layer for high-efficiency inverted polymer solar cells 

  31. J. Phys. Chem. B Tokumoto 107 2 568 2003 10.1021/jp0217381 Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route 

  32. Phys. Rev. B Bylsma 33 12 8207 1986 10.1103/PhysRevB.33.8207 Dependence of energy gap on x and T in Zn1?x Mnx Se: the role of exchange interaction 

  33. Appl. Phys. Lett. Fonoberov 85 24 5971 2004 10.1063/1.1835992 Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes 

  34. J. Appl. Phys. Hsu 96 8 4671 2004 10.1063/1.1787905 Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods 

  35. Appl. Phys. Lett. Li 85 9 1601 2004 10.1063/1.1786375 Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods 

  36. Optoelectron. Lett. Li 8 4 241 2012 10.1007/s11801-012-2023-1 Synthesis and photoluminescent properties of ZnO: Cu/ZnO core/shell nanocrystals 

  37. J. Phys. Chem. B Wang 108 26 8773 2004 10.1021/jp048482e Large-scale synthesis of six-nanometer-wide ZnO nanobelts 

  38. Chem. Soc. Rev. Heath 27 1 65 1998 10.1039/a827065z Covalency in semiconductor quantum dots 

  39. Adv. Func. Mater. Wu 14 8 806 2004 10.1002/adfm.200305092 Well-aligned ZnO nanorods via hydrogen treatment of ZnO films 

  40. CrystEngComm Panigrahy 11 9 1920 2009 10.1039/b904833m Polymer-mediated shape-selective synthesis of ZnO nanostructures using a single-step aqueous approach 

  41. Arabian J. Chem. Shah 2014 Optical and morphological studies of transition metal doped ZnO nanorods and their applications in hybrid bulk heterojunction solar cells 

  42. Appl. Phys. Lett. Vanheusden 68 3 403 1996 10.1063/1.116699 Correlation between photoluminescence and oxygen vacancies in ZnO phosphors 

  43. G. Xiong, U. Pal, J. Serrano, K. Ucer, R. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, Phys. Status Solidi (c) 3(10) (2006) 3577-3581. 

  44. Taylor 1988 ‘Phonon Response Theory and the Infrared and Raman Experiments 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로