$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Interaction of Pd single atoms with different CeO2 crystal planes: A first-principles study

Applied surface science, v.433, 2018년, pp.1036 - 1048  

He, Bingling (College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China) ,  Wang, Jinlong (College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China) ,  Ma, Dongwei (School of Physics, Anyang Normal University, Anyang 455000, China) ,  Tian, Zhixue (College of Physics and Information Engineering, Hebei Normal University, Shijiazhuang, Hebei 050024, China) ,  Jiang, Lijuan (College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China) ,  Xu, Yan (College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China) ,  Cheng, Sujun (College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China)

Abstract AI-Helper 아이콘AI-Helper

Abstract The adsorption of single Pd atoms on the various CeO2 surfaces, including (111), (110), and (100), has been studied based on the first-principles calculations. It is found that, according to the calculated adsorption energy, interaction strength between Pd and the three CeO2 surfaces follo...

주제어

참고문헌 (81)

  1. Angew. Chem. Schlögl 127 3531 2015 10.1002/ange.201410738 Heterogene Katalysatoren-fundamental betrachtet 

  2. Chem. Soc. Rev. Li 43 1543 2014 10.1039/C3CS60296F Morphology-dependent nanocatalysts: Rod-shaped oxides 

  3. Chem. Rev. Vohs 113 4136 2013 10.1021/cr300328u Site requirements for the adsorption and reaction of oxygenates on etal oxide surfaces 

  4. Chem. Rev. Woodruff 113 3863 2013 10.1021/cr3002998 Quantitative structural studies of corundum and rocksalt oxide surfaces 

  5. J. Mater. Sci. Lu 51 10400 2016 10.1007/s10853-016-0260-6 The mechanism of oxygen activation on single Pt-atom doped SnO2 (110) surface 

  6. Chem. Soc. Rev. Zaera 42 2746 2013 10.1039/C2CS35261C Nanostructured materials for applications in heterogeneous catalysis 

  7. Chem. Rev. Fernando 115 6112 2015 10.1021/cr500506r Quantum mechanical studies of large metal oxide, and metal chalcogenide nanoparticles and clusters 

  8. Chem. Soc. Rev. Weaver 43 7536 2014 10.1039/C3CS60420A Alkane activation on crystalline metal oxide surfaces 

  9. Chem. Commun. Huang 50 1634 2014 10.1039/c3cc48527g Facet-dependent properties of polyhedral nanocrystals 

  10. Nanoscale Pal 7 14159 2015 10.1039/C5NR03395K Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis 

  11. Acc. Chem. Res. Huang 49 520 2016 10.1021/acs.accounts.5b00537 Oxide nanocrystal model catalysts 

  12. Chem-Asian J. Zhou 11 1470 2016 10.1002/asia.201600115 Shape engineering of oxide nanoparticles for heterogeneous catalysis 

  13. Z. Kristallogr. Wulff 34 449 1901 10.1524/zkri.1901.34.1.449 On the question of speed of growth and dissolution of crystal surfaces 

  14. Science Zhan 308 844 2005 10.1126/science.1109213 An octane-fueled solid oxide fuel cell 

  15. J. Catal. Chang 293 195 2012 10.1016/j.jcat.2012.06.025 Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity 

  16. ChemCatChem Gao 5 3610 2013 10.1002/cctc.201300709 Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts 

  17. Catal. Sci. Technol. Huang 4 3772 2014 10.1039/C4CY00679H Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals 

  18. J. Catal. Wu 285 61 2012 10.1016/j.jcat.2011.09.011 On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes 

  19. J. Catal. Désaunay 297 193 2013 10.1016/j.jcat.2012.10.011 Surface-dependent oxidation of H2 on CeO2 surfaces 

  20. J. Mater. Chem. A Deori 3 6909 2015 10.1039/C4TA06547F (100) surface-exposed CeO2 nanocubes as an efficient heterogeneous catalyst in the tandem oxidation of benzyl alcohol, para-chlorobenzyl alcohol and toluene to the corresponding aldehydes selectively 

  21. J. Phys. Chem. C Kropp 119 23021 2015 10.1021/acs.jpcc.5b07186 Activity versus selectivity of the methanol oxidation at ceria surfaces: a comparative first-principles study 

  22. ACS Catal. Aneggi 4 172 2014 10.1021/cs400850r Shape-dependent activity of ceria in soot combustion 

  23. Angew. Chem. Si 120 2926 2008 10.1002/ange.200705828 Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction 

  24. ChemSusChem Agarwal 6 1898 2013 10.1002/cssc.201300651 Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity 

  25. Catal. Today Trovarelli 50 353 1999 10.1016/S0920-5861(98)00515-X The utilization of ceria in industrial catalysis 

  26. Catal. Today Han 158 481 2010 10.1016/j.cattod.2010.07.020 Performance of dynamic oxygen storage capacity, water-gas shift and steam reforming reactions over Pd-only three-way catalysts 

  27. Catal. Commun. Xiao 6 796 2005 10.1016/j.catcom.2005.07.015 Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method 

  28. J. Catal. Mayernick 278 16 2011 10.1016/j.jcat.2010.11.006 Methane oxidation on Pd-Ceria: a DFT study of the mechanism over PdxCe1-xO2, Pd, and PdO 

  29. J. Phys. Chem. C Song 119 27505 2015 10.1021/acs.jpcc.5b09293 A DFT study of CO oxidation at the Pd-CeO2(110) interface 

  30. Solid State Ionics Gorte 175 1 2004 10.1016/j.ssi.2004.09.036 Recent developments on anodes for direct fuel utilization in SOFC 

  31. Electrochem. Solid State Lett. McIntosh 6 A240 2003 10.1149/1.1613231 Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons 

  32. J. Mater. Sci. Guo 51 10917 2016 10.1007/s10853-016-0303-z The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane 

  33. Environ. Sci. Technol. Tan 49 8675 2015 10.1021/acs.est.5b01264 Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation 

  34. ACS Catal. Hu 6 2265 2016 10.1021/acscatal.5b02617 Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/Ceria for CO and propane oxidation 

  35. J. Chem. Phys. Mayernick 131 084701 2009 10.1063/1.3207283 Ab initio thermodynamic evaluation of Pd atom interaction with CeO2 surfaces 

  36. Phys. Chem. Chem. Phys. Choi 16 22588 2014 10.1039/C4CP03366C A DFT+ U computational study on stoichiometric and oxygen deficient M-CeO2 systems (M=Pd1, Rh1, Rh10, Pd10 and Rh4Pd6) 

  37. Angew. Chem. Kopelent 127 8852 2015 10.1002/ange.201503022 Catalytically active and spectator Ce3+ in ceria-supported metal catalysts 

  38. J. Phys. Chem. Lett. Artiglia 8 102 2017 10.1021/acs.jpclett.6b02314 Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy 

  39. J. Phys. Chem. C Zhao 116 15986 2012 10.1021/jp3016326 Superoxide and peroxide species on CeO2 (111), and their oxidation roles 

  40. J. Power Sources Chen 234 69 2013 10.1016/j.jpowsour.2013.01.121 Charge transfer and formation of Ce3+ upon adsorption of metal atom M (M=Cu, Ag Au) on CeO2 (100) surface 

  41. Phys. Chem. Chem. Phys. Cui 14 1923 2012 10.1039/c2cp22720g First-principles investigation of transition metal atom M (M=Cu, Ag Au) adsorption on CeO2 (110) 

  42. J. Power Sources Tang 197 28 2012 10.1016/j.jpowsour.2011.09.026 Electronic states of metal (Cu, Ag, Au) atom on CeO2 (111) surface: the role of local structural distortion 

  43. Appl. Surf. Sci. Ma 394 47 2017 10.1016/j.apsusc.2016.10.087 Platinum adsorption on ceria: a comparative theoretical study of different surfaces 

  44. J. Mater. Chem. A Lu 2 2333 2014 10.1039/C3TA11169E Several different charge transfer and Ce3+ localization scenarios for Rh-CeO2(111) 

  45. Phys. Rev. B Kresse 47 558 1993 10.1103/PhysRevB.47.558 Ab initio molecular dynamics for liquid metals 

  46. Comp. Mater. Sci. Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set 

  47. Phys. Rev. B Kresse 54 11169 1996 10.1103/PhysRevB.54.11169 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set 

  48. Phys. Rev. B Blöchl 50 17953 1994 10.1103/PhysRevB.50.17953 Projector augmented-wave method 

  49. Phys. Rev. B Kresse 59 1758 1999 10.1103/PhysRevB.59.1758 From ultrasoft pseudopotentials to the projector augmented-wave method 

  50. Phys. Rev. Lett. Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Generalized gradient approximation made simple 

  51. Phys. Rev. B Anisimov 44 943 1991 10.1103/PhysRevB.44.943 Band theory and mott insulators: hubbard U instead of stoner I 

  52. Phys. Rev. B Dudarev 57 1505 1998 10.1103/PhysRevB.57.1505 Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study 

  53. J. Phys. Chem. C Huang 112 8643 2008 10.1021/jp709898r CO adsorption and oxidation on ceria surfaces from DFT+U calculations 

  54. J. Phys. Chem. B Fabris 109 22860 2005 10.1021/jp0511698 Electronic and atomistic structures of clean and reduced ceria surfaces 

  55. Phys. Rev. B Fabris 72 237102 2005 10.1103/PhysRevB.72.237102 Reply to comment on ‘Taming multiple valency with density functionals: a case study of defective ceria 

  56. Phys. Rev. B Andersson 75 035109 2007 10.1103/PhysRevB.75.035109 Modeling of CeO2 Ce2O3, and CeO2-x in the LDA+ U formalism 

  57. Surf. Sci. Nolan 576 217 2005 10.1016/j.susc.2004.12.016 Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria 

  58. J. Phys. Chem. C Yang 114 4486 2010 10.1021/jp909174u Physisorbed chemisorbed, and oxidized CO on highly active Cu-CeO2 (111) 

  59. J. Phys. Chem. C Hakanoglu 114 11485 2010 10.1021/jp101715j Strong kinetic isotope effect in the dissociative chemisorption of H2 on a PdO (101) thin film 

  60. J. Phys. Chem. C Kan 113 1495 2009 10.1021/jp808008k Adsorption of water on a PdO(101) thin film: evidence of an adsorbed HO-H2O complex 

  61. Phys. Rev. Lett. Sterrer 98 096107 2007 10.1103/PhysRevLett.98.096107 Control of the charge state of metal atoms on thin MgO films 

  62. Nanoscale Zhang 9 3140 2017 10.1039/C6NR09297G Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of catalysts 

  63. J. Solid State Chem. Kümmerle 147 485 1999 10.1006/jssc.1999.8403 The structures of C-Ce2O3+δ, Ce7O12, and Ce11O20 

  64. Phys. Rev. B Monkhorst 13 5188 1976 10.1103/PhysRevB.13.5188 Special points for Brillouin-zone integrations 

  65. Phys. Rev. B Skorodumova 69 075401 2004 10.1103/PhysRevB.69.075401 Surface properties of CeO2 from first principles 

  66. Phys. Chem. Chem. Phys. Hernandez 11 5246 2009 10.1039/b820373c Electronic charge transfer between ceria surfaces and gold adatoms: a GGA+U investigation 

  67. Comp. Mater. Sci. Henkelman 36 354 2006 10.1016/j.commatsci.2005.04.010 A fast and robust algorithm for Bader decomposition of charge density 

  68. Phys. Lett. A Yang 369 132 2007 10.1016/j.physleta.2007.04.068 Oxygen vacancy formation energy at the Pd/CeO2 (111) interface 

  69. J. Phys.: Condens. Matter Lu 22 475003 2010 Interfacial properties of NM/CeO2 (111) (NM=noble metal atoms or clusters of Pd Pt and Rh): A first principles study 

  70. Phys. Chem. Chem. Phys. Alfredsson 4 6100 2002 10.1039/b204680f A comparison between metal supported c-ZrO2 and CeO2 

  71. J. Less Common Met. Kumar 147 59 1989 10.1016/0022-5088(89)90148-3 Formation of NaCl- and Cu2O-type oxides of platinum and palladium on carbon and alumina support films 

  72. J. Chem. Phys. Blanco-Rey 130 2009 10.1063/1.3046683 Methane dissociation and methyl diffusion on PdO (100) 

  73. Phys. Rev. Lett. Derzsi 113 025505 2014 10.1103/PhysRevLett.113.025505 Structures of late transition metal monoxides from Jahn-Teller instabilities in the rock salt lattice 

  74. Phys. Rev. B Yang 76 075421 2007 10.1103/PhysRevB.76.075421 First-principles study of the Pt/CeO2 (111) interface 

  75. J. Alloys Compd. Hirosaki 351 31 2003 10.1016/S0925-8388(02)01043-5 Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides 

  76. Phys. Rev. B Rogal 69 075421 2004 10.1103/PhysRevB.69.075421 Thermodynamic stability of PdO surfaces 

  77. Surf. Sci. Nolan 595 223 2005 10.1016/j.susc.2005.08.015 The electronic structure of oxygen vacancy defects at the low index surfaces of ceria 

  78. J. Chem. Phys. Yang 120 7741 2004 10.1063/1.1688316 Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study 

  79. Phys. Chem. Chem. Phys. Nolan 8 216 2006 10.1039/B514782D CeO2 catalysed conversion of CO, NO2 and NO from first principles energetics 

  80. Appl. Catal. B-Environ. Luo 87 92 2009 10.1016/j.apcatb.2008.08.017 One-step synthesis of nanostructured Pd-doped mixed oxides MOx-CeO2 (M=Mn, Fe Co, Ni, Cu) for efficient CO and C3H8 total oxidation 

  81. J. Phys. Chem. C Neitzel 120 9852 2016 10.1021/acs.jpcc.6b02264 Atomically dispersed Pd, Ni, and Pt Species in ceria-based catalysts: principal differences in stability and reactivity 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로