$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The origin of performance limitations in miniemulsion nanoparticulate organic photovoltaic devices

Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, v.175, 2018년, pp.77 - 88  

Al-Mudhaffer, Mohammed F. (Centre for Organic Electronics, University of Newcastle) ,  Griffith, Matthew J. (Centre for Organic Electronics, University of Newcastle) ,  Feron, Krishna (Centre for Organic Electronics, University of Newcastle) ,  Nicolaidis, Nicolas C. (Centre for Organic Electronics, University of Newcastle) ,  Cooling, Nathan A. (Centre for Organic Electronics, University of Newcastle) ,  Zhou, Xiaojing (Centre for Organic Electronics, University of Newcastle) ,  Holdsworth, John (Centre for Organic Electronics, University of Newcastle) ,  Belcher, Warwick J. (Centre for Organic Electronics, University of Newcastle) ,  Dastoor, Paul C. (Centre for Organic Electronics, University of Newcastle)

Abstract AI-Helper 아이콘AI-Helper

Abstract Nanoparticulate organic films are an attractive area of organic photovoltaic (OPV) research given their potential for controlling active layer morphology on the nanoscale. However, the power conversion efficiency of these devices remains limited in comparison to the analogous bulk heteroju...

주제어

참고문헌 (49)

  1. Chem. Soc. Rev. Mazzio 44 78 2014 10.1039/C4CS00227J The future of organic photovoltaics 

  2. Chem. Mater. Walker 23 470 2011 10.1021/cm102189g Small molecule solution-processed bulk heterojunction solar cells 

  3. Adv. Mater. Blom 19 1551 2007 10.1002/adma.200601093 Device physics of polymer: fullerene bulk heterojunction solar cells 

  4. Polymers Yu 6 2473 2014 10.3390/polym6092473 Towards high performance organic photovoltaic cells: a review of recent developments in organic photovoltaics 

  5. Sol. Energy Mater. Sol. Cells Jørgensen 119 84 2013 10.1016/j.solmat.2013.05.034 The state of organic solar cells - a meta analysis 

  6. IEEE J. Sel. Top. Quantum Electron. Griffith 22 4100714 2016 10.1109/JSTQE.2015.2487968 Combining printing, coating, and vacuum deposition on the roll-to-roll scale: a hybrid organic photovoltaics fabrication 

  7. J. Mater. Chem. Hoppe 16 45 2006 10.1039/B510618B Morphology of polymer/fullerene bulk heterojunction solar cells 

  8. Science Sariciftci 258 1474 1992 10.1126/science.258.5087.1474 Photoinduced electron transfer from a conducting polymer to buckminsterfullerene 

  9. Adv. Mater. Gartner 26 6653 2014 10.1002/adma.201402360 Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions 

  10. Nanotechnology Burke 22 265710 2011 10.1088/0957-4484/22/26/265710 Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10nm length scales 

  11. Nat. Mater. Kietzke 2 408 2003 10.1038/nmat889 Novel approaches to polymer blends based on polymer nanoparticles 

  12. ACS Nano Richards 8 4313 2014 10.1021/nn405914g Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy 

  13. Nano Energy Holmes 19 495 2016 10.1016/j.nanoen.2015.11.021 Nano-pathways: bridging the divide between water processable nanoparticulate and bulk heterojunction organic photovoltaics 

  14. Org. Electron. Sankaran 28 118 2016 10.1016/j.orgel.2015.10.011 Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing 

  15. Sol. Energy Mater. Sol. Cells D’Olieslaeger 159 179 2017 10.1016/j.solmat.2016.09.008 Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells 

  16. Org. Electron. D’Olieslaeger 42 42 2017 10.1016/j.orgel.2016.12.018 Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions 

  17. Nanoscale Schwarz 7 19899 2015 10.1039/C5NR06244F Charge generation and morphology in P3HT:PCBM nanoparticles prepared by mini-emulsion and reprecipitation methods 

  18. Polym. Int. Nunzi 600 583 2005 How to model the behaviour of organic photovoltaic cells 

  19. World J. Model. Simul. Boudia 6 198 2010 A modelling and simulation approach of electromagnetic field in organic photovoltaic devices 

  20. Nano Lett. Gehan 14 5238 2014 10.1021/nl502209s Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres 

  21. Opt. Express Troparevsky 18 24715 2010 10.1364/OE.18.024715 Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference 

  22. Sci. China Phys. Mech. Astron. Xinyan 54 375 2011 10.1007/s11433-011-4248-6 Recent progress in the numerical modeling for organic thin film solar cells 

  23. Appl. Opt. Mitsas 34 1678 1995 10.1364/AO.34.001678 Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates 

  24. Jpn. J. Appl. Phys. Jung 50 2301 2011 10.1143/JJAP.50.122301 Optical modeling and analysis of organic solar cells with coherent multilayers and incoherent glass substrate using generalized transfer matrix method 

  25. W. Theiss, 〈www.mtheiss.com〉, (Accessed 6 June 2016). 

  26. J. Mater. Chem. A Cooling 4 10274 2016 10.1039/C6TA04191D A low-cost mixed fullerene acceptor blend for printed electronics 

  27. J. Phys. Chem. C. Lee 116 12455 2012 10.1021/jp3028947 Solubility of [6,6]-phenyl-C61-butyric acid methyl ester and optimal blending ratio of bulk heterojunction polymer solar cells 

  28. J. Phys. Chem. C. O’Regan 111 14001 2007 10.1021/jp073056p Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit 

  29. Bondarenko 89 2005 Progress in Chemometrics Research 

  30. Nanoscale Truong 6 2307 2014 10.1039/c3nr05211g Resonant rayleigh light scattering of single Au nanoparticles with different sizes and shapes 

  31. J. Am. Chem. Soc. Tian 127 7632 2005 10.1021/ja042192u Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles 

  32. Electron. Mater. Lett. Jung 7 185 2011 10.1007/s13391-011-0902-4 Semiconductor nanoparticles with surface passivation and surface plasmon 

  33. Stenzel 2005 The Physics of Thin Film Optical Spectra 

  34. MRS Bull. Forrest 30 28 2005 10.1557/mrs2005.5 The limits to organic photovoltaic cell efficiency 

  35. Adv. Energy Mater. Fang 3 54 2013 10.1002/aenm.201200372 A narrow optical gap small molecule acceptor for organic solar cells 

  36. ACS Photonics Armin 1 173 2014 10.1021/ph400044k Quantum efficiency of organic solar cells: electro-optical cavity considerations 

  37. Nano Lett. Burkhard 9 4037 2009 10.1021/nl902205n Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells 

  38. ACS Appl. Mater. Interfaces Tan 2 1414 2010 10.1021/am100078g Charge mobility and recombination in a new hole transporting polymer and its photovoltaic blend 

  39. Adv. Mater. Bag 25 6411 2013 10.1002/adma.201301302 Efficient charge transport in assemblies of surfactant-stabilized semiconducting nanoparticles 

  40. Adv. Energy Mater. Clarke 1401345 2014 A comparison of five experimental techniques to measure charge carrier lifetime in polymer / fullerene solar cells 

  41. Adv. Energy Mater. Wright 1602026 2017 10.1002/aenm.201602026 Quantifying recombination losses during charge extraction in bulk heterojunction solar cells using a modified charge extraction technique 

  42. Appl. Phys. Lett. Boix 95 233302 2009 10.1063/1.3270105 Determination of gap defect states in organic bulk heterojunction solar cells from capacitance measurements 

  43. Adv. Energy Mater. Leever 2 120 2012 10.1002/aenm.201100357 In situ characterization of lifetime and morphology in operating bulk heterojunction organic photovoltaic devices by impedance spectroscopy 

  44. Org. Electron. Garcia-Belmonte 9 847 2008 10.1016/j.orgel.2008.06.007 Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy 

  45. Synth. Met. Radaoui 210 352 2015 10.1016/j.synthmet.2015.10.028 Analysis of the AC response of an organic bulk-heterojunction solar cell based on AnE-PVstat: PCBM 

  46. J. Phys. Chem. C. Bisquert 118 18983 2014 10.1021/jp5062144 Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination 

  47. J. Braz. Chem. Soc. Martini 11 50 2000 10.1590/S0103-50532000000100010 Electrochemical impedance spectroscopy of dodecylsulphate doped polypyrrole films in the dark and under illumination 

  48. Appl. Phys. Lett. Feron 103 193306 2013 10.1063/1.4829152 Modelling transport in nanoparticle organic solar cells using Monte Carlo methods 

  49. Sol. Energy Mater. Sol. Cells Holmes 117 437 2013 10.1016/j.solmat.2013.06.003 Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로