$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Complete design methodology of biomimetic safety device for cobots’ prismatic joints

Robotics and autonomous systems, v.102, 2018년, pp.44 - 53  

Ayoubi, Y. (Dept. GMSC, Pprime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346) ,  Laribi, M.A. (Dept. GMSC, Pprime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346) ,  Courrèges, F. (Xlim Research Institute of the University of Limoges) ,  Zeghloul, S. (Dept. GMSC, Pprime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346) ,  Arsicault, M. (Dept. GMSC, Pprime Institute, CNRS - University of Poitiers - ENSMA - UPR 3346)

Abstract AI-Helper 아이콘AI-Helper

Abstract Making robots collaborate safely with humans has created a new design paradigm involving the biomimetic mechanical behavior of robots’ joints. However, few authors have contributed to the problems of safety in pure linear motion, i.e. a prismatic joint, in contrast to rotary motion. ...

주제어

참고문헌 (40)

  1. F. Tobe, Why Co-Bots Will Be a Huge Innovation and Growth Driver for Robotics Industry. [Online]. Available: http://spectrum.ieee.org/automaton/robotics/industrial-robots/collaborative-robots-innovation-growth-driver. 

  2. Rob. Auton. Syst. Vanderborght 61 12 1601 2013 10.1016/j.robot.2013.06.009 Variable impedance actuators: A review 

  3. Mechatronics Tagliamonte 22 8 1187 2012 10.1016/j.mechatronics.2012.09.011 Double actuation architectures for rendering variable impedance in compliant robots: A review 

  4. IEEE Robot. Autom. Mag. Zinn 11 2 12 2004 10.1109/MRA.2004.1310938 Playing it safe 

  5. Chinese J. Aeronaut. Jianbin 22 1 105 2009 10.1016/S1000-9361(08)60075-8 Adaptive impedance-controlled manipulator based on collision detection 

  6. 10.1109/ROBOT.2008.4543452 S. Wolf, G. Hirzingher, G. Hirzinger, A new variable stiffness design: maching requirements of the next robot generation, in: Icra08, 2008, pp. 1741-1746. 

  7. J.L. Blanco, D. Garc, AVASTT: A new variable stiffness actuator with torque threshold, in: ROBOT2013: First Iberian Robotics Conference 2014, vol. 252. 

  8. 10.1109/ROBOT.2008.4543528 G. Grioli, R. Schiavi, S. Sen, A. Bicchi, VSA-II: Variable stiffness actuation for safe and performing robots interacting with humans, in: IEEE Conf. Robot. Autom., 2008, pp. 2171-2176. 

  9. 10.1109/IROS.1995.525827 G.A. Pratt, M.M. Williamson, Series elastic actuators, in: IEEE/RSJ Int. Conf. Intell. Robot. Syst. ’Human Robot Interact. Coop. Robot. vol. 1, no. 1524, 1995, pp. 399-406. 

  10. Int. J. Adv. Robot. Syst. Corral 11 1 1 2014 Forward and inverse dynamics of the biped PASIBOT 

  11. Artif. Life Pfeifer 11 1-2 99 2005 10.1162/1064546053279017 New robotics: Design principles for intelligent systems 

  12. 10.1109/ROBOT.2010.5509662 O. Eiberger, S. Haddadin, M. Weis, A. Albu-Schaffer, G. Hirzinger, On joint design with intrinsic variable compliance: Derivation of the DLR QA-joint, in: Proc. - IEEE Int. Conf. Robot. Autom., 2010, pp. 1687-1694. 

  13. 10.1109/BIOROB.2006.1639223 K. Koganezawa, T. Inaba, T. Nakazawa, Stiffness and angle control of antagonistially driven joint, in: Proc. First IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics, 2006, BioRob 2006, vol. 2006, 2006, pp. 1007-1013. 

  14. Mech. Mach. Theory English 34 1 7 1999 10.1016/S0094-114X(98)00026-3 Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs 

  15. 10.21236/ADA434149 E. Torres-jara, J. Banks, A simple and scalable force actuator, in: Int. Simp. Robot., 2004. 

  16. Int. J. Rob. Res. Zinn 23 4-5 379 2004 10.1177/0278364904042193 A new actuation approach for human friendly robot design 

  17. Mech. Mach. Theory Park 43 10 1332 2008 10.1016/j.mechmachtheory.2007.10.004 Safe link mechanism based on nonlinear stiffness for collision safety 

  18. IEEE Robot. Autom. Mag. Ham 16 3 81 2009 10.1109/MRA.2009.933629 Compliant actuator designs 

  19. Microsyst. Technol. Hao 1 2017 A framework of designing compliant mechanisms with nonlinear stiffness characteristics 

  20. J. Mech. Robot. Hao 8 4 41008 2016 10.1115/1.4032592 Extended static modeling and analysis of compliant compound parallelogram mechanisms considering the initial internal axial force * 

  21. J. Mech. Robot. Hao 7 4 41016 2015 10.1115/1.4029556 Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms 

  22. Appl. Sci. Hao 6 11 367 2016 10.3390/app6110367 Feasibility study of a gripper with thermally controlled stiffness of compliant jaws 

  23. Precis. Eng. Zhao 48 305 2017 10.1016/j.precisioneng.2016.12.013 Design of a stiffness-adjustable compliant linear-motion mechanism 

  24. Mech. Mach. Theory Gonzalez Rodriguez 46 12 1970 2011 10.1016/j.mechmachtheory.2011.07.002 Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation 

  25. J. Mech. Des. Wu 136 12 122302 2014 10.1115/1.4028705 Linear variable-stiffness mechanisms based on preloaded curved beams 

  26. 10.1109/AIM.2015.7222684 T. Wu, Design and analysis of a linear elastic mechanism with adjustable stiffness, 2015, pp. 1084-1089. 

  27. HIC Tolerance Levels Correlated To Brain Injury. [Online]. Available: http://www.eurailsafe.net/subsites/operas/HTML/appendix/Table14.htm. (Accessed 03 June 2015)). 

  28. I. 15066 ISO TC 184/SC2/WG3, Robots and Robotic Devices -Industrial Safety Requirements Collaborative Industrial Robots, 2012. 

  29. S. Haddadin, A. Albu-Schaffer, G. Hirzinger, The role of the robot mass and velocity in physical human-robot interaction - Part I: Non-constrained blunt impacts, in: Proc. - IEEE Int. Conf. Robot. Autom. no. 11838, 2008, pp. 1331-1338. 

  30. J. Comput. Nonlinear Dyn. Lopez-Martinez 9 1 1 2013 A flexible multibody model of a safety robot arm for experimental validation and analysis of design parameters 

  31. 10.4271/892440 S.W. Rouhana, D.C. Viano, E.A. Jedrzejczak, J.D. McCleary, Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies, SAE Technical Paper 1989. 

  32. Biol. Cybernet. Lan 71 2 123 1994 10.1007/BF00197315 Optimal control of antagonistic muscle stiffness during voluntary movements 

  33. 10.1007/978-3-319-22368-1_21 S.Z.F. Courreges, M.A. Laribi, M. Arsicault, An in vivo experiment to assess the validity of the log linearized hunt-crossley model for contacts of robots with the human abdomen, in: 4th IFToMM International Symposium on Robotics, 2015. 

  34. 10.1109/IROS.2016.7759071 Y. Ayoubi, M.A. Laribi, F. Courreges, S. Zeghloul, M. Arsicault, A complete methodology to design a safety mechanism for prismatic joint implementation, in: IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2016, pp. 304-309. 

  35. Viano 1999 The Biomedical Engineering HandBook, vol. 2 Biomechanics of chest and abdomen impact 

  36. J.-J.P.J.-J. Park, H.-S.K.H.-S. Kim, J.-B.S.J.-B. Song, Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety, in: 2009 IEEE Int. Conf. Robot. Autom., 2009, pp. 3371-3376. 

  37. Int. J. Soc. Robot. Vermeulen 2 3 275 2010 10.1007/s12369-010-0048-9 Intrinsically safe robot arm: Adjustable static balancing and low power actuation 

  38. IEEE Robot. Autom. Mag. Gao 16 4 0 2009 Assessing the danger of robot impact 

  39. Mech. Mach. Theory Hyun 45 6 880 2010 10.1016/j.mechmachtheory.2010.01.001 Variable stiffness mechanism for human-friendly robots 

  40. 10.1109/ICRA.2011.5980282 J. Park, S. Haddadin, J. Song, A. Albu-sch, Designing optimally safe robot surface properties for minimizing the stress characteristics of human-robot collisions, in: Int. Conf. Robot. Autom., 2011, pp. 5413-5420. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로