$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Understanding the Effects of Au Morphology on CO2 Electrocatalysis

The journal of physical chemistry. C, Nanomaterials and Interfaces, v.122 no.8, 2018년, pp.4274 - 4280  

Back, Seoin (Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehakro, Daejeon 34141,) ,  Yeom, Min Sun (Department of Supercomputing Application, Supercomputing Service Center, Division of National Supercomputing R&D, Korea Institute of Science and Technology Information (KISTI), Daejeon 305-806,) ,  Jung, Yousung (Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehakro, Daejeon 34141,)

국가컴퓨팅센터 유발 논문

Abstract AI-Helper 아이콘AI-Helper

Toward efficient CO2 electrocatalysis for CO production, nano structured Au catalysts have been extensively investigated by the morphology control of oxygen plasma-induced Au islands, oxide-derived Au, Au nanowires (NWs), Au nanoparticles (NPs), nanoporous Au thin films, and Au needles, yet the bett...

참고문헌 (42)

  1. Whipple, Devin T., Kenis, Paul J. A.. Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction. The journal of physical chemistry letters, vol.1, no.24, 3451-3458.

  2. Jeon, H., Koh, J., Park, S., Jee, M., Ko, D. H., Hwang, Y., Min, B.. A monolithic and standalone solar-fuel device having comparable efficiency to photosynthesis in nature. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.11, 5835-5842.

  3. Modern Aspects of Electrochemistry Hori Y. 89 2008 10.1007/978-0-387-49489-0_3 

  4. Koh, Jai Hyun, Jeon, Hyo Sang, Jee, Michael Shincheon, Nursanto, Eduardus Budi, Lee, Hyunjoo, Hwang, Yun Jeong, Min, Byoung Koun. Oxygen Plasma Induced Hierarchically Structured Gold Electrocatalyst for Selective Reduction of Carbon Dioxide to Carbon Monoxide. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.2, 883-889.

  5. Chen, Yihong, Li, Christina W., Kanan, Matthew W.. Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles. Journal of the American Chemical Society, vol.134, no.49, 19969-19972.

  6. Zhu, Wenlei, Zhang, Yin-Jia, Zhang, Hongyi, Lv, Haifeng, Li, Qing, Michalsky, Ronald, Peterson, Andrew A., Sun, Shouheng. Active and Selective Conversion of CO2 to CO on Ultrathin Au Nanowires. Journal of the American Chemical Society, vol.136, no.46, 16132-16135.

  7. Zhu, Wenlei, Michalsky, Ronald, Metin, Önder, Lv, Haifeng, Guo, Shaojun, Wright, Christopher J., Sun, Xiaolian, Peterson, Andrew A., Sun, Shouheng. Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO. Journal of the American Chemical Society, vol.135, no.45, 16833-16836.

  8. Song, Jun Tae, Ryoo, Hyewon, Cho, Minhyung, Kim, Jaehoon, Kim, Jin‐Gyu, Chung, Sung‐Yoon, Oh, Jihun. Nanoporous Au Thin Films on Si Photoelectrodes for Selective and Efficient Photoelectrochemical CO2 Reduction. Advanced energy materials, vol.7, no.3, 1601103-.

  9. Liu, Min, Pang, Yuanjie, Zhang, Bo, De Luna, Phil, Voznyy, Oleksandr, Xu, Jixian, Zheng, Xueli, Dinh, Cao Thang, Fan, Fengjia, Cao, Changhong, de Arquer, F. Pelayo García, Safaei, Tina Saberi, Mepham, Adam, Klinkova, Anna, Kumacheva, Eugenia, Filleter, Tobin, Sinton, David, Kelley, Shana O., Sargent, Edward H.. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, vol.537, no.7620, 382-386.

  10. Back, Seoin, Yeom, Min Sun, Jung, Yousung. Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO. ACS catalysis, vol.5, no.9, 5089-5096.

  11. Kresse, G., Joubert, D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review. B, Condensed matter and materials physics, vol.59, no.3, 1758-1775.

  12. Kresse, G., Furthmüller, J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, vol.6, no.1, 15-50.

  13. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  14. Hammer, B., Hansen, L. B., Nørskov, J. K.. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical review. B, Condensed matter and materials physics, vol.59, no.11, 7413-7421.

  15. Blöchl, P. E.. Projector augmented-wave method. Physical review. B, Condensed matter, vol.50, no.24, 17953-17979.

  16. Li, Lin, Larsen, Ask H., Romero, Nichols A., Morozov, Vitali A., Glinsvad, Christian, Abild-Pedersen, Frank, Greeley, Jeff, Jacobsen, Karsten W., Nørskov, Jens K.. Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters. The journal of physical chemistry letters, vol.4, no.1, 222-226.

  17. Peterson, Andrew A., Abild-Pedersen, Frank, Studt, Felix, Rossmeisl, Jan, Nørskov, Jens K.. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & environmental science, vol.3, no.9, 1311-1315.

  18. Back, Seoin, Kim, Heejin, Jung, Yousung. Selective Heterogeneous CO2 Electroreduction to Methanol. ACS catalysis, vol.5, no.2, 965-971.

  19. Norskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T., Jonsson, H.. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.108, no.46, 17886-17892.

  20. Seto, K., Iannelli, A., Love, B., Lipkowski, J.. The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, vol.226, no.1, 351-360.

  21. Durand, W.J., Peterson, A.A., Studt, F., Abild-Pedersen, F., Norskov, J.K.. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surface science, vol.605, no.15, 1354-1359.

  22. Shi, Chuan, Hansen, Heine A., Lausche, Adam C., Nørskov, Jens K.. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Physical chemistry chemical physics : PCCP, vol.16, no.10, 4720-4727.

  23. Gomez, R., Fernandez-Vega, A., Feliu, J. M., Aldaz, A.. Hydrogen evolution on platinum single crystal surfaces: effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on platinum (100). The Journal of physical chemistry, vol.97, no.18, 4769-4776.

  24. Chan, Karen, Tsai, Charlie, Hansen, Heine A., Nørskov, Jens K.. Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction. ChemCatChem, vol.6, no.7, 1899-1905.

  25. Back, Seoin, Kim, Jun-Hyuk, Kim, Yong-Tae, Jung, Yousung. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction. ACS applied materials & interfaces, vol.8, no.35, 23022-23027.

  26. Calle-Vallejo, Federico, Loffreda, David, Koper, Marc T. M., Sautet, Philippe. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nature chemistry, vol.7, no.5, 403-410.

  27. Calle-Vallejo, Federico, Tymoczko, Jakub, Colic, Viktor, Vu, Quang Huy, Pohl, Marcus D., Morgenstern, Karina, Loffreda, David, Sautet, Philippe, Schuhmann, Wolfgang, Bandarenka, Aliaksandr S.. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science, vol.350, no.6257, 185-189.

  28. Kleis, J., Greeley, J., Romero, N. A., Morozov, V. A., Falsig, H., Larsen, A. H., Lu, J., Mortensen, J. J., Dułak, M., Thygesen, K. S., Nørskov, J. K., Jacobsen, K. W.. Finite Size Effects in Chemical Bonding: From Small Clusters to Solids. Catalysis letters, vol.141, no.8, 1067-1071.

  29. Tritsaris, G. A., Greeley, J., Rossmeisl, J., Nørskov, J. K.. Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt. Catalysis letters, vol.141, no.7, 909-913.

  30. Dong, Cunku, Fu, Jianyu, Liu, Hui, Ling, Tao, Yang, Jing, Qiao, Shi Zhang, Du, Xi-Wen. Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: a DFT study. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.15, 7184-7190.

  31. Cheng, Tao, Huang, Yufeng, Xiao, Hai, Goddard, William A.. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles. The journal of physical chemistry letters, vol.8, no.14, 3317-3320.

  32. Huang, Hongwen, Jia, Huanhuan, Liu, Zhao, Gao, Pengfei, Zhao, Jiangtao, Luo, Zhenlin, Yang, Jinlong, Zeng, Jie. Understanding of Strain Effects in the Electrochemical Reduction of CO2: Using Pd Nanostructures as an Ideal Platform. Angewandte Chemie, vol.129, no.13, 3648-3652.

  33. Stamenkovic, Vojislav R., Fowler, Ben, Mun, Bongjin Simon, Wang, Guofeng, Ross, Philip N., Lucas, Christopher A., Marković, Nenad M.. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, vol.315, no.5811, 493-497.

  34. Bu, Lingzheng, Zhang, Nan, Guo, Shaojun, Zhang, Xu, Li, Jing, Yao, Jianlin, Wu, Tao, Lu, Gang, Ma, Jing-Yuan, Su, Dong, Huang, Xiaoqing. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, vol.354, no.6318, 1410-1414.

  35. Huang, Xiaoqing, Zhao, Zipeng, Cao, Liang, Chen, Yu, Zhu, Enbo, Lin, Zhaoyang, Li, Mufan, Yan, Aiming, Zettl, Alex, Wang, Y. Morris, Duan, Xiangfeng, Mueller, Tim, Huang, Yu. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science, vol.348, no.6240, 1230-1234.

  36. Li, Mufan, Zhao, Zipeng, Cheng, Tao, Fortunelli, Alessandro, Chen, Chih-Yen, Yu, Rong, Zhang, Qinghua, Gu, Lin, Merinov, Boris V., Lin, Zhaoyang, Zhu, Enbo, Yu, Ted, Jia, Qingying, Guo, Jinghua, Zhang, Liang, Goddard III, William A., Huang, Yu, Duan, Xiangfeng. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, vol.354, no.6318, 1414-1419.

  37. Won, Da Hye, Shin, Hyeyoung, Koh, Jaekang, Chung, Jaehoon, Lee, Hee Sang, Kim, Hyungjun, Woo, Seong Ihl. Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. Angewandte Chemie. international edition, vol.55, no.32, 9297-9300.

  38. Peterson, AndrewA., Nørskov, Jens K.. Activity Descriptors forCO2 Electroreduction to Methane on Transition-Metal Catalysts. The journal of physical chemistry letters, vol.3, no.2, 251-258.

  39. Vigderman, Leonid, Zubarev, Eugene R.. Starfruit-Shaped Gold Nanorods and Nanowires: Synthesis and SERS Characterization. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.24, 9034-9040.

  40. Sau, T. K., Murphy, C. J.. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, vol.126, no.28, 8648-8649.

  41. Niu, Wenxin, Chua, Yi An Alvin, Zhang, Weiqing, Huang, Hejin, Lu, Xianmao. Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property. Journal of the American Chemical Society, vol.137, no.33, 10460-10463.

  42. Liu, Subiao, Wang, Xian-Zong, Tao, Hongbiao, Li, Tengfei, Liu, Qi, Xu, Zhenghe, Fu, Xian-Zhu, Luo, Jing-Li. Ultrathin 5-fold twinned sub-25nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano energy, vol.45, 456-462.

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로