$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Large-scale liquid hydrogen production methods and approaches: A review

Applied energy, v.212, 2018년, pp.57 - 83  

Aasadnia, Majid (Renewable Energies Department, Faculty of New Sciences and Technologies, University of Tehran) ,  Mehrpooya, Mehdi

Abstract AI-Helper 아이콘AI-Helper

Abstract Large-scale hydrogen liquefaction (LHL) methods and different approaches of the configuration of hydrogen liquefaction cycles are chronicled. History landmarks of permanent gases liquefaction are quick reviewed and the basic hydrogen liquefaction cycles, the existing in-service LHL plants ...

주제어

참고문헌 (255)

  1. Appl Energy Dell 1 4 279 1975 10.1016/0306-2619(75)90029-X Hydrogen-the ultimate fuel 

  2. Appl Energy Hoffman 47 2 183 1994 10.1016/0306-2619(94)90078-7 Hydrogen-the optimum chemical fuel 

  3. Int J Hydrogen Energy Uyar 42 4 2453 2017 10.1016/j.ijhydene.2016.09.086 Integration of hydrogen energy systems into renewable energy systems for the better design of 100% renewable energy communities 

  4. Renew Energy Won 103 226 2017 10.1016/j.renene.2016.11.038 Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization 

  5. Energies Wang 10 2 185 2017 10.3390/en10020185 Application of liquid hydrogen with SMES for efficient use of renewable energy in the energy internet 

  6. Appl Energy Antonelli 194 522 2017 10.1016/j.apenergy.2016.11.091 Liquid air energy storage: potential and challenges of hybrid power plants 

  7. Appl Energy Amrollahi 202 66 2017 10.1016/j.apenergy.2017.05.116 Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response 

  8. Appl Energy Aneke 179 350 2016 10.1016/j.apenergy.2016.06.097 Energy storage technologies and real life applications-a state of the art review 

  9. 10.1007/978-3-319-48920-9_8 Al-Hallaj S, Wilke S, Schweitzer B. Energy storage systems for smart grid applications. In: Water, energy & food sustainability in the middle east. Springer; 2017. p. 161-92. 

  10. Renew Sustain Energy Rev Hemmati 65 11 2016 10.1016/j.rser.2016.06.029 Emergence of hybrid energy storage systems in renewable energy and transport applications-A review 

  11. Appl Energy Eriksson 202 348 2017 10.1016/j.apenergy.2017.03.132 Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems-A critical review 

  12. Renew Sustain Energy Rev Panwar 15 3 1513 2011 10.1016/j.rser.2010.11.037 Role of renewable energy sources in environmental protection: A review 

  13. Chevalier 2016 The new energy crisis: climate, economics, and geopolitics 

  14. Appl Energy Demirbas 86 S108 2009 10.1016/j.apenergy.2009.04.036 Political, economic and environmental impacts of biofuels: a review 

  15. Int J Hydrogen Energy Gurz 1 2017 The meeting of hydrogen and automotive: A review 

  16. Int J Hydrogen Energy Stroman 39 21 11279 2014 10.1016/j.ijhydene.2014.05.065 Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle 

  17. 10.1007/978-0-85729-136-3 Corbo P, Migliardini F, Veneri O. Hydrogen fuel cells for road vehicles; 2011. 

  18. Int J Hydrogen Energy Yang 32 2 268 2007 10.1016/j.ijhydene.2006.05.009 Determining the lowest-cost hydrogen delivery mode 

  19. Renew Sustain Energy Rev Sharma 43 1151 2015 10.1016/j.rser.2014.11.093 Hydrogen the future transportation fuel: From production to applications 

  20. Appl Energy El-Osta 65 1 165 2000 10.1016/S0306-2619(99)00092-6 Hydrogen as a fuel for the transportation sector: possibilities and views for future applications in Libya 

  21. Denton 1964 Technology and uses of liquid hydrogen 

  22. 10.1088/1757-899X/171/1/012013 Cardella U, Decker L, Klein H. Economically viable large-scale hydrogen liquefaction. In: IOP conference series: materials science and engineering, vol. 171(1); 2017. p. 12013. 

  23. Berstad D, Stang J, Nekså P. A future energy chain based on liquefied hydrogen; 2009. p. 1-23. 

  24. Ann Sci Taylor 5 2 129 1942 10.1080/00033794200201401 The origin of the thermometer 

  25. Mendelssohn KAG. The quest for absolute zero; 1966. 

  26. Rev CENIC Ciencias Químicas Wisniak 36 3 187 2005 Guillaume amontons 

  27. Almqvist 2003 History of industrial gases 

  28. Forgan 1980 Science and the sons of genius: Studies on Humphry Davy 

  29. 10.5962/bhl.title.51041 Davy H. The Collected Works of Sir Humphry Davy (etc.), vol. 1. Smith, elder; 1839. 

  30. Thompson 1898 Michael Faraday: his life and work 

  31. 10.1007/978-1-349-00554-3_4 Faraday M. “Faraday,” in a history of chemistry, Springer; 1964. p. 99-141. 

  32. Philos Trans R Soc London Faraday 113 160 1823 10.1098/rstl.1823.0016 On fluid chlorine 

  33. Dull CE, Brooks WO, Metcalfe HC. Modern Physics. Henry Holt. 

  34. Topham 1986 Carbon dioxide 

  35. Isis Roller 43 2 109 1952 10.1086/349402 Thilorier and the first solidification of a‘ permanent’ gas (1835) 

  36. Adv Synth Catal Natterer 31 1 375 1844 Darstellung der Kohlensäure und des oxydirten Stickgases, Stickstoffoxyduls, im starren Zustande 

  37. Brenni P. Johann A. Natterer (1821-1900) and His Pumps for Liquifying Gases. 

  38. Philos Trans R Soc London Faraday 135 1845 On the liquefaction and solidification of bodies generally existing as gases 

  39. Tilden 1918 Sir William Ramsay: memorials of his life and work 

  40. J Franklin Inst Moore 191 2 145 1921 10.1016/S0016-0032(21)91160-8 Helium: Its history, properties, and commercial development 

  41. Communications Kamerlingh Onnes 14 1894 On the Cryogenic Laboratory at Leiden and on the production of very low temperatutes 

  42. Scott 1959 Cryogenic engineering 

  43. Cryogenics (Guildf) Kurti 10 3 183 1970 10.1016/0011-2275(70)90099-8 Low temperature terminology 

  44. Cryogenics (Guildf) Scurlock 30 6 483 1990 10.1016/0011-2275(90)90048-H A matter of degrees: a brief history of cryogenics 

  45. Proc R Soc London Andrews 18 114-122 42 1869 Bakerian lecture: on the continuity of the gaseous and liquid states of matter 

  46. Philos Trans R Soc London Andrews 166 421 1876 10.1098/rstl.1876.0017 The Bakerian lecture: on the gaseous state of matter 

  47. Rev CENIC Ciencias Químicas Wisniak 39 2 2008 Thomas Andrews 

  48. Notes Rec R Soc Rowlinson 57 2 143 2003 10.1098/rsnr.2003.0202 The work of Thomas Andrews and James Thomson on the liquefaction of gases 

  49. V. Regnault, Relation des expériences entreprises par ordre de monsieur le ministre des travaux publics, et sur la proposition de la Commission Centrale des Machine a Vapeur, pour determiner les principales lois et les données numériques qui entrent dans le calcul des, vol. 3. Firmin Didot, 1870. 

  50. Philos Mag Ser 4 Joule 4 28 481 1852 10.1080/14786445208647169 LXXVI. On the thermal effects experienced by air in rushing through small apertures 

  51. Br Pat Siemens 2064 29 1857 Improvements in refrigerating and producing ice, and in apparatus or machinery for that purpose 

  52. Appl Cryog Technol Weinstock 1 1968 A review of cryogenic history and principles of refrigeration 

  53. Notes Rec R Soc Papanelopoulou 2013 10.1098/rsnr.2013.0047 Louis Paul Cailletet: The liquefaction of oxygen and the emergence of low-temperature research 

  54. 10.1038/scientificamerican04061878-1883bsupp Pictet R. On the liquefaction of hydrogen; 1878. 

  55. Color Technol Holme 122 5 235 2006 10.1111/j.1478-4408.2006.00041.x Sir William Henry Perkin: a review of his life, work and legacy 

  56. Indian J Chem Technol Wisniak 10 4 424 2003 James Dewar-More than a flask 

  57. Commun Phys Lab Leiden Keesom 57 3 1926 Prof. Dr. H. Kamerlingh Onnes. His life-work, the founding of the Cryogenic Laboratory 

  58. 10.1007/978-94-015-3443-7_31 Lorentz HA. Heike Kamerlingh Onnes (1853-1926). In: Collected Papers. Springer; 1939. p. 407-410. 

  59. J Chem Educ Oesper 21 6 263 1944 10.1021/ed021p263 Heike Kamerlingh Onnes 

  60. Ann Phys Wróblewski 20 256 1883 Liquid state oxygen and nitrogen 

  61. Scurlock RG. 100 years after Dewar’s dewar: cryogenics today. In: Proceedings of the Royal Institution of Great Britain, vol. 65; 1994. p. 145. 

  62. Nature Muir 51 388 1895 10.1038/051388b0 The liquefaction of gases 

  63. Scurlock 1992 History and origins of cryogenics 

  64. Claude 1913 Liquid Air, Oxygen, Nitrogen 

  65. Thevenot 1979 A history of refrigeration throughout the world 

  66. von Linde C. Process and apparatus for liquefying gases or gaseous mixtures, and for producing cold, more particularly applicable for separating oxygen from atmospheric air,” Ger. Patent# GB189512528, 1896. 

  67. von Linde C. Aus meinem Leben und von meiner Arbeit: Aufzeichnungen für meine Kinder und meine Mitarbeiter; als Manuskript gedruckt. Oldenbourg; 1916. 

  68. Sloane 1920 Liquid air and the liquefaction of gases 

  69. CR Acad Sci Fr Claude 130 500 1902 Sur la liquéfaction de l’air détenté avec travail extérieur récupérable’ 

  70. KI Luft-und Kältetechnik Linde 31 9 419 1995 Aus der Geschichte der Tieftemperaturverfahrenstechnik 

  71. Cailletet LP. Sur la condensation des gaz réputés incoercibles. CR, vol. 85; 1877. p. 1270-1271. 

  72. Meunier S. Académie des Sciences-Séance de 31 décembre. Liquéfaction de l’oxygene’,” La Nat., no. 240; 1878. p. 95-96. 

  73. Wisniak J. Raoul-Pierre Pictet-The liquefaction of oxygen and achievement of low temperatures; 2003. 

  74. Proc Phys Soc London Travers 17 1 561 1899 10.1088/1478-7814/17/1/336 The liquefaction of hydrogen 

  75. Chem Rev Kobe 52 1 117 1953 10.1021/cr60161a003 The critcal properties of elements and compounds 

  76. Pr Kom Hist Nauk PAU Rafalska-Łasocha 14 1 335 2015 10.4467/23921749PKHN_PAU.16.016.5272 Karol Olszewski’s 100th anniversary of death and his contribution to cryogenics (in Polish) 

  77. Stud Hist Philos Sci Part A Gavroglu 19 2 243 1988 10.1016/0039-3681(88)90028-3 Heike Kamerlingh Onnes’ researches at Leiden and their methodological implications 

  78. Maxwell 1890 The scientific papers of James Clerk Maxwell 

  79. Science (80-.) Dewar 8 183 3 1898 10.1126/science.8.183.3 Liquid hydrogen 

  80. 10.1007/978-3-662-11680-7_1 Plank R. Geschichte der Kälteerzeugung und Kälteanwendung. Entwicklung Wirtschaftliche Bedeut. Werkstoffe; 1954. p. 1-160. 

  81. Europhys News van Delft 39 6 23 2008 10.1051/epn:2008602 The liquefaction of helium 

  82. Int J Refrig Reif-Acherman 32 5 738 2009 10.1016/j.ijrefrig.2009.02.019 Several motivations, improved procedures, and different contexts: The first liquefactions of helium around the world 

  83. J Therm Sci Eng Appl Chakravarthy 3 2 20801 2011 10.1115/1.4003701 A Review of Refrigeration Methods in the Temperature Range 4-300 K 

  84. Int J Refrig Richardson 20 5 367 1997 10.1016/S0140-7007(97)00005-4 A review of pulse tube refrigeration 

  85. Cryogenics (Guildf) Walker 26 7 387 1986 10.1016/0011-2275(86)90081-0 Miniature Stirling cryocoolers: trends in development 

  86. Int J Hydrogen Energy Walker 17 8 593 1992 10.1016/0360-3199(92)90071-4 Small-scale liquefaction of hydrogen 

  87. Maytal 2012 Miniature Joule-Thomson cryocooling: principles and practice 

  88. Walker 297 1983 “Claude and Joule-Brayton Systems”, in Cryocoolers 

  89. Kostionk 2003 A text book of cryogenics 

  90. Walker 1994 Low-capacity cryogenic refrigeration 

  91. Radebaugh 3 2007 Cryogenic Engineering Historical summary of cryogenic activity prior to 1950 

  92. Castle 146 2007 Cryogenic engineering Fifty-years’ development of cryogenic liquefaction processes 

  93. J Phys: Condens Matter de Bruyn Ouboter 21 16 164221 2009 Cryogenics at the end of the 19th and the first half of the 20th century (1880-1940) 

  94. Int J Refrig Foerg 25 3 283 2002 10.1016/S0140-7007(01)00020-2 History of cryogenics: the epoch of the pioneers from the beginning to the year 1911 

  95. Cryogenics (Guildf) Kurti 18 8 451 1978 10.1016/0011-2275(78)90203-5 From Cailletet and Pictet to microkelvin 

  96. Phys B+ C Kurti 109 1737 1982 10.1016/0378-4363(82)90197-8 From the first mist of liquid oxygen to nuclear ordering: anecdotes from the history of refrigeration 

  97. AIP Conf Proc McIntosh 710 1 9 2004 10.1063/1.1774661 Hydrogen liquefiers since 1950 

  98. Int J Hydrogen Energy Krasae-in 35 10 4524 2010 10.1016/j.ijhydene.2010.02.109 Development of large-scale hydrogen liquefaction processes from 1898 to 2009 

  99. Eucken A. Die Molekularwärme des Wasserstoffs bei tiefen Temperaturen; 1912. 

  100. Z Phys Heisenberg 41 239 1927 10.1007/BF01391241 Multi-body problem and resonance in quantum mechanics II 

  101. Zeitschrift für Phys A Hadron Nucl Hund 42 2 93 1927 10.1007/BF01397124 Zur deutung der molekelspektren. II 

  102. Proc Roy Soc Dennison 115 483 1927 DENNISON 1927 

  103. Naturwissenschaften Bonhoeffer 17 182 1929 10.1007/BF01506559 Experiments on para-hydrogen and ortho-hydrogen 

  104. J Am Chem Soc Giauque 50 12 3221 1928 10.1021/ja01399a010 Symmetrical and antisymmetrical hydrogen and the third law of thermodynamics. Thermal equilibrium and the triple point pressure 

  105. J Res Natl Bur Std Brickwedde 15 463 1935 10.6028/jres.015.030 The difference in vapor pressures of ortho-and paradeuterium 

  106. Ind Eng Chem Schmauch 56 5 20 1964 10.1021/ie50653a003 Technical aspects of ortho-parahydrogen conversion 

  107. Jensen 1980 Brookhaven national laboratory selected cryogenic data notebook: sections I-IX 

  108. 10.6028/NBS.MONO.168 McCarty R, Hord J, Roder HM. NBS Monograph 168 Selected Properties of Hydrogen (Engineering Design Data); 1981. 

  109. Int J Hydrogen Energy Sherif 22 7 683 1997 10.1016/S0360-3199(96)00201-7 Liquid Hydrogen: Potential, Problems and a Proposed Research Program 

  110. Notardonato WU. Analysis and testing of an integrated refrigeration and storage system for liquid hydrogen zero boil-off, liquefaction, and densification, vol. 68(1) 2006. 

  111. J Energy Resour Technol Gursu 115 3 221 1993 10.1115/1.2905997 Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems-Part 1: model development 

  112. J Heat Transfer Zhang 127 12 1391 2005 10.1115/1.2098875 A review of heat transfer issues in hydrogen storage technologies 

  113. Tzimas E, Filiou C, Peteves SD, Veyret JB. Hydrogen storage: state-of-the-art and future perspective. EU Comm. JRC Petten, EUR 20995EN; 2003. 

  114. Int J Hydrogen Energy Kalanidhi 13 5 311 1988 10.1016/0360-3199(88)90055-9 Boil-off in long-term stored liquid hydrogen 

  115. Cryogenics (Guildf) Fradkov 5 3 136 1965 10.1016/0011-2275(65)90004-4 Liquefier with two-stage conversion to obtain 98 per cent parahydrogen 

  116. Bliesner 2013 Parahydrogen-orthohydrogen conversion for boil-off reduction from space stage 

  117. Barrick PL, Weitzel DH, Connolly TW. Ortho-Para conversion studies. Advances in Cryogenic Engineering. 

  118. White JF. Development of high-activity para-to ortho-hydrogen conversion catalysts. Volume 2,” Air Products and Chemicals Inc Allentown Pa; 1989. 

  119. Int J Hydrogen Energy Lowesmith 39 35 20516 2014 10.1016/j.ijhydene.2014.08.002 Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS 

  120. Renew Sustain Energy Rev Mazloomi 16 5 3024 2012 10.1016/j.rser.2012.02.028 Hydrogen as an energy carrier: prospects and challenges 

  121. Appl Energy Veziroglu 47 2 227 1994 10.1016/0306-2619(94)90080-9 The fusion-hydrogen energy system 

  122. Haselden 1971 Cryogenic fundamentals 

  123. Barron 20 1972 Advances in cryogenic engineering Liquefaction cycles for cryogens 

  124. Ullmann’s Encycl Ind Chem Windmeier 2000 Cryogenic technology 

  125. Mukhopadhyay 2010 Fundamentals of cryogenic engineering 

  126. Walker 1983 Cryocoolers. Part 1: Fundamentals 

  127. Walker 2012 Cryocoolers: Part 2: applications 

  128. Europhys News Kubbinga 41 4 21 2010 10.1051/epn/2010402 A tribute to Wróblewski and Olszewski 

  129. Renew Sustain Energy Rev Zhou 9 4 395 2005 10.1016/j.rser.2004.05.005 Progress and problems in hydrogen storage methods 

  130. PCCP Felderhoff 9 21 2643 2007 10.1039/b701563c Hydrogen storage: the remaining scientific and technological challenges 

  131. Br J Hist Sci Davies 22 1 63 1989 10.1017/S0007087400025541 William Hampson (1854-1926): A Note 

  132. 10.6028/NBS.TN.617 Mccarty RD, Weber LA. Thermophysical properties of parahydrogen from the freezing liquid line to 5000 R for pressures to 10000 psia; 1972. 

  133. J Phys Chem Ref Data Leachman 38 3 721 2009 10.1063/1.3160306 Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen 

  134. Bradu B, Blanco E, Gayet P, Avezuela R, Cobas P, Veleiro A. CRYOLIB. A commercial library for modelling and simulation of cryogenic processes with EcosimPro; 2012. 

  135. Int J Hydrogen Energy Berstad 35 10 4512 2010 10.1016/j.ijhydene.2010.02.001 Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling 

  136. Int J Hydrogen Energy Krasae-In 39 13 7015 2014 10.1016/j.ijhydene.2014.02.046 Optimal operation of a large-scale liquid hydrogen plant utilizing mixed fluid refrigeration system 

  137. Exergy An Int J Rosen 2 4 221 2002 10.1016/S1164-0235(02)00087-0 Does industry embrace exergy? 

  138. Int J Energy Res Bejan 26 7 2002 10.1002/er.804 Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture 

  139. Kotas 2013 The exergy method of thermal plant analysis 

  140. Int J Hydrogen Energy Berstad 34 3 1560 2009 10.1016/j.ijhydene.2008.11.058 Comparison criteria for large-scale hydrogen liquefaction processes 

  141. Biogr Mem Fellows R Soc Shoenberg 31 327 1985 Piotr Leonidovich Kapitza. 9 July 1894-8 April 1984 

  142. Proc R Soc Lond A Math Phys Sci Kapitza 147 860 189 1934 The liquefaction of helium by an adiabatic method 

  143. 10.1201/9780203026991 Flynn TM. Crogenic engineering: revised and expanded, second ed.; 2005. 

  144. Int Commun Heat Mass Transf Al-Otaibi 31 1 95 2004 10.1016/S0735-1933(03)00205-7 Thermoeconomic optimization of vapor-compression refrigeration systems 

  145. Int J Hydrogen Energy Nandi 18 2 131 1993 10.1016/0360-3199(93)90199-K Performance and optimization of hydrogen liquefaction cycles 

  146. Cryogenics (Guildf) Thomas 51 6 287 2011 10.1016/j.cryogenics.2010.12.006 Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders 

  147. Int J Refrig Kundu 38 1 46 2014 10.1016/j.ijrefrig.2013.10.011 Evaluating performance of mixed mode multistage helium plants for design and off-design conditions by exergy analysis 

  148. Drnevich R. Hydrogen Delivery, Liquefaction & Compression. strategic initiatives for hydrogen delivery workshop. New York; 2003. 

  149. Hendricks RC, Peller I, Baron AK. Joule Thomson Inversion Curves and Related Coefficients. NASA Tech. Note, no. July; 1972. p. 1-32. 

  150. Peschka 2012 Liquid hydrogen: fuel of the future 

  151. 10.1016/B978-0-08-010779-0.50005-7 Vander Arend PC, Chelton DB. The liquefaction of hydrogen 3A. Basic principles. Technol Uses Liq Hydrog 1964. p. 38. 

  152. Macinko 1 1960 Advances in cryogenic engineering Hydrogen liquefaction cycles 

  153. Drnevich R. Hydrogen delivery: liquefaction and compression. In: Strategic initiatives for Hydrogen Delivery Workshop, Tonawanda, NY, 7 May 2003; 2003. 

  154. Brown 1997 Compressors: Selection and sizing 

  155. Compend Hydrog Energy Hydrog Storage, Distrib Infrastruct Valenti 27 2016 Symbols and constants 

  156. Podbielniak W. Art of refrigeration; 26-May-1936. 

  157. Fuderer M, Andrija A. Verfahren zur Tiefkühling. Ger Pat 1969; 1426956. 

  158. Ruhemann M. Improvements in and relating to cooling processes and machines. Sogutma ve lSI pompas1 Sist. sogutkan kan § lmlan Kullan. E. Erta § 1950; 3: p. 201-212. 

  159. Ruhemann 1949 The separation of gases 

  160. Ind Eng Chem Res Del Nogal 47 22 8724 2008 10.1021/ie800515u Optimal design of mixed refrigerant cycles 

  161. Walnum HT, Berstad D, Drescher M, Neksa P, Quack H, Haberstroh C. Principles for the liquefaction of hydrogen with emphasis on precooling processes. In: 12th Cryogenics 2012; 2012. p. 8. 

  162. Maytal 277 2013 Miniature Joule-Thomson Cryocooling Mixed coolant cryocooling 

  163. Venkatarathnam vol. 100 2008 

  164. 10.1016/S0140-7007(96)00023-0 Venkatarathnam G, Mokashi G, Murthy SS. Occurrence of pinch points in condensers and evaporators for zeotropic refrigerant mixtures Frrquence des points de pincement dans des condenseurs et des 6vaporateurs pour des mrlanges de frigorigrnes zrotropes mCp (- ∼ x mCp (∼ x rh (Oh ∼ ArUq i (Oh,” vol. 19, no. 6, pp. 361-368, 1996. 

  165. Ind Eng Chem Res Venkatarathnam 53 30 12122 2014 10.1021/ie501838y Density marching method for calculating phase envelopes. 2. Three-phase envelopes 

  166. Int J Refrig Venkatarathnam 22 3 205 1999 10.1016/S0140-7007(98)00056-5 Effect of mixture composition on the formation of pinch points in condensers and evaporators for zeotropic refrigerant mixtures 

  167. Venkatarathnam G, Kumar PS, Murthy SS. Performance of a mixed refrigerant cascade refrigerator; 2003. p. 478-83. 

  168. Cryogenics (Guildf) Xu 59 60 2014 10.1016/j.cryogenics.2013.11.001 Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process 

  169. Appl Energy Xu 102 1127 2013 10.1016/j.apenergy.2012.06.031 The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process 

  170. Cryogenics (Guildf) Narayanan 78 66 2016 10.1016/j.cryogenics.2016.06.012 Performance of two mixed refrigerant processes providing refrigeration at 70 K 

  171. Energy Convers Manage Wang 88 947 2014 10.1016/j.enconman.2014.09.007 Thermodynamic and economic optimization of LNG mixed refrigerant processes 

  172. 10.1016/j.jngse.2014.10.007 Ghorbani B, Mafi M, Salehi GR, Amidpour M, Nayenian SMM. The mathematical method and thermodynamic approaches to design multi-component refrigeration used in cryogenic process part II : optimal arrangement. 2014; 2(1): p. 13-21. 

  173. Phys Procedia Quack 67 176 2015 10.1016/j.phpro.2015.06.031 Nelium, a refrigerant with high potential for the temperature range between 27 and 70 K 

  174. Appl Energy Khan 111 1018 2013 10.1016/j.apenergy.2013.06.010 Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes 

  175. Int J Greenh Gas Control Mohanraj 3 1 108 2009 10.1016/j.ijggc.2008.07.003 Environment friendly alternatives to halogenated refrigerants-A review 

  176. Phys Procedia Kochenburger 67 227 2015 10.1016/j.phpro.2015.06.039 Evaluation of a two-stage mixed refrigerant cascade for HTS cooling below 60 K 

  177. Kleemenko AP. One flow cascade cycle. In: Proc. of the 10th International Congress of Refrigeration, vol. 1; 1959. p. 34-39. 

  178. Gas Sep Purif Kerry 2006 Industrial gas handbook gas separation 

  179. Sci Am Pictet 5 2030 1878 10.1038/scientificamerican06151878-2030supp The liquefaction of oxygen and hydrogen, and the solidifying of hydrogen 

  180. Cryogenics (Guildf) Jeong 34 11 929 1994 10.1016/0011-2275(94)90078-7 Optimum temperature staging of cryogenic refrigeration system 

  181. Cryogenics (Guildf) Xuan 43 2 117 2003 10.1016/S0011-2275(03)00049-3 Optimum staging of multistage exo-reversible refrigeration systems 

  182. Exp Therm Fluid Sci Du 33 2 240 2009 10.1016/j.expthermflusci.2008.08.006 A study on the cycle characteristics of an auto-cascade refrigeration system 

  183. Energy Choi 61 179 2013 10.1016/j.energy.2013.08.047 Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery 

  184. James Evans West. The economics of small to medium liquid hydrogen facilities; 2003. 

  185. Arend PCW, Chelton DB. 3B2. Large-Scale Hydrogen Liquefaction Facilities. Technol Uses Liq Hydrog 2013. p. 79. 

  186. Brickwedde 1 1960 Advances in cryogenic engineering A few remarks on the beginnings of the NBS-AEC cryogenic laboratory 

  187. Vander Arend 49 1960 Advances in cryogenic engineering Large-scale production, handling, and storage of liquid hydrogen 

  188. Gifford 177 1961 Advances in cryogenic engineering Liquid hydrogen from refinery waste gases 

  189. Flynn 1 1972 Advances in cryogenic engineering Trends in cryogenic fluid production in the United States 

  190. Kinard GE. The commercial use of liquid hydrogen over the last 40 years. In: International cryogenic engineering conference; 1998. p. 39-44. 

  191. Int J Hydrogen Energy Ohta 10 5 275 1985 10.1016/0360-3199(85)90179-X Hydrogen energy research and developments in Japan 

  192. AIP Conf Proc Ohira 710 1 27 2004 10.1063/1.1774663 A summary of liquid hydrogen and cryogenic technologies in Japan’s WE-NET Project 

  193. Cryogenics (Guildf) Li 35 5 317 1995 10.1016/0011-2275(95)95350-N A brief overview of cryogenics in China 

  194. Int J Hydrogen Energy Bracha 19 1 53 1994 10.1016/0360-3199(94)90177-5 Large-scale hydrogen liquefaction in Germany 

  195. Linde-Reports Sci Technol Gross 54 37 1994 Liquid hydrogen for Europe-the Linde plant at Ingolstadt 

  196. Weindorf 2003 Comments on the paper by Baldur Eliasson and Ulf Bossel ‘The future of the hydrogen economy: bright or bleak?’ 

  197. Ki Luft Und Kältetechnik Quack 3 157 2002 Die Schlusselrolle der Kryotechnik in der Wasserstoff-Energiewirtschaft 

  198. 10.1063/1.4860858 Ohlig K, Decker L. The latest developments and outlook for hydrogen liquefaction technology. In: 20th World Hydrog. Energy Conf. WHEC 2014, vol. 1; 2014. p. 639-646. 

  199. Technol Uses Liq Hydrog Croft 56 1964 10.1016/B978-0-08-010779-0.50006-9 3B1. Medium size hydrogen liquefiers 

  200. Int J Hydrogen Energy Baker 3 3 321 1978 10.1016/0360-3199(78)90037-X A study of the efficiency of hydrogen liquefaction 

  201. Matsuda H, Nagami M. Study of large hydrogen liquefaction process. 수소에너지 1997; 8(3): p. 175. 

  202. AIP Conf Proc Quack 613 1 255 2002 10.1063/1.1472029 Conceptual design of a high efficiency large capacity hydrogen liquefier 

  203. Chem Pet Eng Kuz’menko 40 1-2 94 2004 10.1023/B:CAPE.0000024144.92081.aa Concept of Building Medium-Capacity Hydrogen Liquefiers With Helium 

  204. Chem Pet Belyakov 38 3 26 2002 Low-capacity hydrogen liquefier with a helium cycle 

  205. Kuendig A, Lorhlein K, Kramer GJ, Huijsmans J. Large scale hydrogen liquefaction in combination with LNG re-gasification. In: Proceedings of the 16th World Hydrogen Energy Conference 2006, Lyon, France; 2006. p. 3326-3333. 

  206. WHEC Kramer 16 1 2006 Clean and green hydrogen 

  207. Stang J, Nekså P, Brendeng E. On the design of an efficient hydrogen liquefaction process. In: WHEC; 2006. p. 1-6. 

  208. Shimko MA. Innovative hydrogen liquefaction cycle; 2008. 

  209. Staats WL, Smith JL, Brisson JG. Analysis of a supercritical hydrogen liquefaction cycle. 2008; .p. 721-730. 

  210. Int J Hydrogen Energy Valenti 33 12 3116 2008 10.1016/j.ijhydene.2008.03.044 Proposal of an innovative, high-efficiency, large-scale hydrogen liquefier 

  211. Int J Hydrogen Energy Krasae-In 35 22 12531 2010 10.1016/j.ijhydene.2010.08.062 Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system 

  212. Int J Hydrogen Energy Krasae-In 35 15 8030 2010 10.1016/j.ijhydene.2010.05.049 Exergy analysis on the simulation of a small-scale hydrogen liquefaction test rig with a multi-component refrigerant refrigeration system 

  213. Int J Hydrogen Energy Krasae-In 36 1 907 2011 10.1016/j.ijhydene.2010.09.005 Simulation and experiment of a hydrogen liquefaction test rig using a multi-component refrigerant refrigeration system 

  214. Int J Hydrogen Energy Yuksel 1 2017 Analysis and assessment of a novel hydrogen liquefaction process 

  215. Int J Hydrogen Energy Sadaghiani 42 9 6033 2017 10.1016/j.ijhydene.2017.01.136 Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration 

  216. Int J Hydrogen Energy Asadnia 42 23 2017 10.1016/j.ijhydene.2017.04.260 A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems 

  217. J Clean Prod Ansarinasab 144 248 2017 10.1016/j.jclepro.2017.01.014 Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system 

  218. Int J Hydrogen Energy Muradov 33 23 6804 2008 10.1016/j.ijhydene.2008.08.054 ‘Green’ path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies 

  219. Appl Therm Eng Kairouani 26 2-3 288 2006 10.1016/j.applthermaleng.2005.05.001 Cooling performance and energy saving of a compression-absorption refrigeration system assisted by geothermal energy 

  220. J Heat Recover Syst Best 6 3 209 1986 10.1016/0198-7593(86)90004-4 Developments in geothermal energy in Mexico-Part five: The commissioning of an ammonia/water absorption cooler operating on low enthalpy geothermal energy 

  221. Int J Hydrogen Energy Kanoglu 32 17 4250 2007 10.1016/j.ijhydene.2007.06.006 Geothermal energy use in hydrogen liquefaction 

  222. Int J Hydrogen Energy Kanoglu 35 16 8783 2010 10.1016/j.ijhydene.2010.05.128 Thermodynamic analysis of models used in hydrogen production by geothermal energy 

  223. Int J Hydrogen Energy Yilmaz 37 2 2058 2012 10.1016/j.ijhydene.2011.06.037 Economics of hydrogen production and liquefaction by geothermal energy 

  224. Int J Hydrogen Energy Ratlamwala 37 23 18108 2012 10.1016/j.ijhydene.2012.09.036 Thermodynamic analysis of a new renewable energy based hybrid system for hydrogen liquefaction 

  225. Int J Hydrogen Energy Ratlamwala 37 7 5840 2012 10.1016/j.ijhydene.2011.12.119 Thermodynamic analysis of a novel integrated geothermal based power generation-quadruple effect absorption cooling-hydrogen liquefaction system 

  226. Int J Exergy Gadalla 12 2 205 2013 10.1504/IJEX.2013.053391 Performance assessment of an integrated absorption cooling-hydrogen liquefaction system using geothermal energy 

  227. Int J Hydrogen Energy Kanoglu 1 2016 Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle 

  228. Appl Therm Eng Mehrpooya 98 591 2016 10.1016/j.applthermaleng.2015.12.032 Novel mixed fluid cascade natural gas liquefaction process configuration using absorption refrigeration system 

  229. Comput Chem Eng Ozcan 90 234 2016 10.1016/j.compchemeng.2016.04.015 Thermodynamic modeling of a nuclear energy based integrated system for hydrogen production and liquefaction 

  230. Sol Energy Bao 85 11 2710 2011 10.1016/j.solener.2011.08.015 A novel auto-cascade low-temperature solar Rankine cycle system for power generation 

  231. Appl Energy Hwangbo 2017 Optimal network design of hydrogen production by integrated utility and biogas supply networks 

  232. 10.1016/j.jpowsour.2007.08.018 Huang C, T-Raissi A. Analyses of one-step liquid hydrogen production from methane and landfill gas. J Power Sources 2007; 173(2 SPEC. ISS.): p. 950-958. 

  233. Catal Today Holladay 139 4 244 2009 10.1016/j.cattod.2008.08.039 An overview of hydrogen production technologies 

  234. Renew Sustain Energy Rev Nikolaidis 67 2017 10.1016/j.rser.2016.09.044 A comparative overview of hydrogen production processes 

  235. Clean Energy States Alliance Lipman 32 2011 An overview of hydrogen production and storage systems with renewable hydrogen case studies 

  236. Geothermics Yilmaz 65 32 2017 10.1016/j.geothermics.2016.08.008 Thermoeconomic modeling and optimization of a hydrogen production system using geothermal energy 

  237. Int J Hydrogen Energy Coskun 36 17 11418 2011 10.1016/j.ijhydene.2010.12.125 Energy analysis of hydrogen production using biogas-based electricity 

  238. R&D Priorities Gaps Riis 2006 Hydrogen production and storage 

  239. Int J Hydrogen Energy Syed 23 7 565 1998 10.1016/S0360-3199(97)00101-8 An economic analysis of three hydrogen liquefaction systems 

  240. Krewitt W, Schmid S. Fuel cell technologies and hydrogen production/distribution options. Dlr, no. September; 2005. p. 1-113. 

  241. Int J Hydrogen Energy Cardella 42 17 12339 2017 10.1016/j.ijhydene.2017.03.167 Process optimization for large-scale hydrogen liquefaction 

  242. Int J Hydrogen Energy Cardella 42 19 13329 2017 10.1016/j.ijhydene.2017.01.068 Roadmap to economically viable hydrogen liquefaction 

  243. Kramer GJ, Huijsmans J, Austgen D. Clean and green hydrogen. Whec, no. June, 2006. p. 1-9. 

  244. MRS Bull Wolf 27 9 684 2002 10.1557/mrs2002.222 Liquid hydrogen technology for vehicles 

  245. Jones LW. Towards a liquid hydrogen fuel economy. 1970. p. 1-24. 

  246. Cogener Distrib Gener J Bossel 18 3 29 2003 10.1080/15453660309509023 The future of the hydrogen economy: bright or bleak? 

  247. Proc IEEE Bossel 94 10 1826 2006 10.1109/JPROC.2006.883715 Does a hydrogen economy make sense? 

  248. Int J Hydrogen Energy Marchenko 40 10 3801 2015 10.1016/j.ijhydene.2015.01.132 The future energy: Hydrogen versus electricity 

  249. 10.1016/j.energy.2004.04.060 Penner SS. Steps toward the hydrogen economy. Energy 2006; 31(1 SPEC. ISS.): p. 33-43. 

  250. Energy Sources Part B Econ Plan Policy Demirbas 12 2 172 2017 10.1080/15567249.2014.950394 Future hydrogen economy and policy 

  251. Int J Hydrogen Energy Momirlan 30 7 795 2005 10.1016/j.ijhydene.2004.10.011 The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet 

  252. Int J Hydrogen Energy Barreto 28 43 1 2002 The hydrogen economy in the 21st century: a sustainable development scenario 

  253. Berstad DO, Stang HGJ, Nekså P. A future energy chain based on liquefied hydrogen; 2009. 

  254. Sea Cengel 1000 8862 2002 Thermodynamics: an engineering approach 

  255. Garceau NM, Lim CM, Kim SY, Oh IH, Baik JH, Karng SW. Development of a small hydrogen liquefaction system. In: 20th World Hydrog. Energy Conf. WHEC 2014, vol. 1; 2014. p. 631-38. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로