$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fluoxetine reverses behavior changes in socially isolated rats: role of the hippocampal GSH-dependent defense system and proinflammatory cytokines

European archives of psychiatry and clinical neuroscience, v.267 no.8, 2017년, pp.737 - 749  

Perić, Ivana ,  Stanisavljević, Andrijana ,  Gass, Peter ,  Filipović, Dragana

초록이 없습니다.

참고문헌 (89)

  1. Prog Neuropsychopharmacol Biol Psychiatry M Maes 35 676 2011 10.1016/j.pnpbp.2010.05.004 Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676-692. doi: 10.1016/j.pnpbp.2010.05.004 

  2. Nat Rev Neurosci ER Kloet de 6 463 2005 10.1038/nrn1683 de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463-475. doi: 10.1038/nrn1683 

  3. Nat Rev Neurosci SJ Lupien 10 434 2009 10.1038/nrn2639 Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434-445. doi: 10.1038/nrn2639 

  4. Brain Struct Funct D Filipović 222 1 2017 10.1007/s00429-016-1218-9 Filipović D, Todorović N, Bernardi RE, Gass P (2017) Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms. Brain Struct Funct 222:1-20. doi: 10.1007/s00429-016-1218-9 

  5. Front Neurosci H-JC Chen 9 3 2015 10.3389/fnins.2015.00003 Chen H-JC, Spiers JG, Sernia C, Lavidis NA (2015) Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 9:3. doi: 10.3389/fnins.2015.00003 

  6. Int J Neuropsychopharmacol JW Gawryluk 14 1069 2011 10.1017/S1461145711000617 Gawryluk JW, Wang J-F, Andreazza AC et al (2011) Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 14:1069-1074. doi: 10.1017/S1461145711000617 

  7. Trends Pharmacol Sci B Halliwell 32 125 2011 10.1016/j.tips.2010.12.002 Halliwell B (2011) Free radicals and antioxidants-quo vadis? Trends Pharmacol Sci 32:125-130. doi: 10.1016/j.tips.2010.12.002 

  8. Neurosci Res I Hovatta 68 261 2010 10.1016/j.neures.2010.08.007 Hovatta I, Juhila J, Donner J (2010) Oxidative stress in anxiety and comorbid disorders. Neurosci Res 68:261-275. doi: 10.1016/j.neures.2010.08.007 

  9. Prog Neuro-Psychopharmacol Biol Psychiatry G Anderson 42 5 2013 10.1016/j.pnpbp.2012.06.014 Anderson G, Maes M (2013) Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry 42:5-19. doi: 10.1016/j.pnpbp.2012.06.014 

  10. Cytokine M Maes 9 853 1997 10.1006/cyto.1997.0238 Maes M, Bosmans E, De Jongh R et al (1997) Increased serum Il-6 and Il-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9:853-858. doi: 10.1006/cyto.1997.0238 

  11. Neurobiol Dis JM Loftis 37 519 2010 10.1016/j.nbd.2009.11.015 Loftis JM, Huckans M, Morasco BJ (2010) Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 37:519-533. doi: 10.1016/j.nbd.2009.11.015 

  12. Immunity S Gordon 32 593 2010 10.1016/j.immuni.2010.05.007 Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593-604. doi: 10.1016/j.immuni.2010.05.007 

  13. Brain Res S Salim 1404 63 2011 10.1016/j.brainres.2011.06.024 Salim S, Asghar M, Taneja M et al (2011) Potential contribution of oxidative stress and inflammation to anxiety and hypertension. Brain Res 1404:63-71. doi: 10.1016/j.brainres.2011.06.024 

  14. Pharmacoeconomics MI Wilde 13 543 1998 10.2165/00019053-199813050-00007 Wilde MI, Benfield P (1998) Fluoxetine. A pharmacoeconomic review of its use in depression. Pharmacoeconomics 13:543-561. doi: 10.2165/00019053-199813050-00007 

  15. Science L Santarelli 301 805 2003 10.1126/science.1083328 Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805-809. doi: 10.1126/science.1083328 

  16. Br Med Bull VA Vaidya 57 61 2001 10.1093/bmb/57.1.61 Vaidya VA, Duman RS (2001) Depresssion-emerging insights from neurobiology. Br Med Bull 57:61-79 

  17. J Affect Disord F Holsboer 62 77 2001 10.1016/S0165-0327(00)00352-9 Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62:77-91. doi: 10.1016/S0165-0327(00)00352-9 

  18. Eur J Pharmacol A Zafir 572 23 2007 10.1016/j.ejphar.2007.05.062 Zafir A, Banu N (2007) Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 572:23-31. doi: 10.1016/j.ejphar.2007.05.062 

  19. Neuropharmacology D Liu 61 592 2011 10.1016/j.neuropharm.2011.04.033 Liu D, Wang Z, Liu S et al (2011) Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology 61:592-599. doi: 10.1016/j.neuropharm.2011.04.033 

  20. Clin Psychol Rev LM Heinrich 26 695 2006 10.1016/j.cpr.2006.04.002 Heinrich LM, Gullone E (2006) The clinical significance of loneliness: a literature review. Clin Psychol Rev 26:695-718. doi: 10.1016/j.cpr.2006.04.002 

  21. Brain Behav Immun M Möller 30 156 2013 10.1016/j.bbi.2012.12.011 Möller M, Du Preez JL, Viljoen FP et al (2013) Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 30:156-167. doi: 10.1016/j.bbi.2012.12.011 

  22. J Neurosci Res D Filipović 89 1461 2011 10.1002/jnr.22687 Filipović D, Zlatković J, Inta D et al (2011) Chronic isolation stress predisposes the frontal cortex but not the hippocampus to the potentially detrimental release of cytochrome c from mitochondria and the activation of caspase-3. J Neurosci Res 89:1461-1470. doi: 10.1002/jnr.22687 

  23. Mol Cell Biochem J Zlatković 393 43 2014 10.1007/s11010-014-2045-z Zlatković J, Todorović N, Bošković M et al (2014) Different susceptibility of prefrontal cortex and hippocampus to oxidative stress following chronic social isolation stress. Mol Cell Biochem 393:43-57. doi: 10.1007/s11010-014-2045-z 

  24. Eur J Pharmacol A Zurita 299 1 1996 10.1016/0014-2999(95)00754-7 Zurita A, Murúa S, Molina V (1996) An endogenous opiate mechanism seems to be involved in stress-induced anhedonia. Eur J Pharmacol 299:1-7. doi: 10.1016/0014-2999(95)00754-7 

  25. Brain Res J Djordjevic 1602 20 2015 10.1016/j.brainres.2015.01.010 Djordjevic J, Djordjevic A, Adzic M et al (2015) Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress. Brain Res 1602:20-31. doi: 10.1016/j.brainres.2015.01.010 

  26. J Chromatogr B Analyt Technol Biomed Life Sci I Kovacevic 830 372 2006 10.1016/j.jchromb.2005.11.034 Kovacevic I, Pokrajac M, Miljkovic B et al (2006) Comparison of liquid chromatography with fluorescence detection to liquid chromatography-mass spectrometry for the determination of fluoxetine and norfluoxetine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 830:372-376. doi: 10.1016/j.jchromb.2005.11.034 

  27. Eur J Pharm Sci J Zlatković 59 20 2014 10.1016/j.ejps.2014.04.010 Zlatković J, Todorović N, Tomanović N et al (2014) Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study. Eur J Pharm Sci 59:20-30. doi: 10.1016/j.ejps.2014.04.010 

  28. Neuropsychopharmacology SC Dulawa 29 1321 2004 10.1038/sj.npp.1300433 Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321-1330. doi: 10.1038/sj.npp.1300433 

  29. Neuropsychopharmacology B Czéh 32 1490 2007 10.1038/sj.npp.1301275 Czéh B, Müller-Keuker JIH, Rygula R et al (2007) Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 32:1490-1503. doi: 10.1038/sj.npp.1301275 

  30. Eur J Pharmacol J Garzón 74 287 1981 10.1016/0014-2999(81)90047-9 Garzón J, Del Río J (1981) Hyperactivity induced in rats by long-term isolation: further studies on a new animal model for the detection of antidepressants. Eur J Pharmacol 74:287-294 

  31. Neurosci Biobehav Rev P Willner 16 525 1992 10.1016/S0149-7634(05)80194-0 Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525-534. doi: 10.1016/S0149-7634(05)80194-0 

  32. Behav Brain Res Y-J Ho 136 1 2002 10.1016/S0166-4328(02)00089-X Ho Y-J, Eichendorff J, Schwarting RKW (2002) Individual response profiles of male Wistar rats in animal models for anxiety and depression. Behav Brain Res 136:1-12 

  33. J Biol Chem OH Lowry 193 265 1951 10.1016/S0021-9258(19)52451-6 Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265-275 

  34. Anal Biochem PJ Hissin 74 214 1976 10.1016/0003-2697(76)90326-2 Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214-226 

  35. Methods Enzymol I Carlberg 113 484 1985 10.1016/S0076-6879(85)13062-4 Carlberg I, Mannervik B (1985) [59] Glutathione reductase. Methods Enzymol 113:484-490. doi: 10.1016/S0076-6879(85)13062-4 

  36. J Biol Chem WH Habig 249 7130 1974 10.1016/S0021-9258(19)42083-8 Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130-7139 

  37. RA Greenwald 1985 CRC handbook of methods for oxygen radical research Greenwald RA (1985) CRC handbook of methods for oxygen radical research. CRC Press, New York 

  38. Psychosom Med JS House 63 273 2001 10.1097/00006842-200103000-00011 House JS (2001) Social isolation kills, but how and why? Psychosom Med 63:273-274. doi: 10.1097/00006842-200103000-00011 

  39. CNS Spectr E Fuchs 10 182 2005 10.1017/S1092852900010038 Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10:182-190 

  40. Behav Brain Res B Vollmayr 150 217 2004 10.1016/S0166-4328(03)00259-6 Vollmayr B, Bachteler D, Vengeliene V et al (2004) Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 150:217-221. doi: 10.1016/S0166-4328(03)00259-6 

  41. Neurosci Biobehav Rev JF Cryan 29 547 2005 10.1016/j.neubiorev.2005.03.008 Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547-569. doi: 10.1016/j.neubiorev.2005.03.008 

  42. Neuropsychobiology J Djordjevic 66 112 2012 10.1159/000338605 Djordjevic J, Djordjevic A, Adzic M, Radojcic MB (2012) Effects of chronic social isolation on wistar rat behavior and brain plasticity markers. Neuropsychobiology 66:112-119. doi: 10.1159/000338605 

  43. Horm Behav N Carrier 61 678 2012 10.1016/j.yhbeh.2012.03.001 Carrier N, Kabbaj M (2012) Testosterone and imipramine have antidepressant effects in socially isolated male but not female rats. Horm Behav 61:678-685. doi: 10.1016/j.yhbeh.2012.03.001 

  44. Trends Neurosci C Sandi 32 312 2009 10.1016/j.tins.2009.02.004 Sandi C, Richter-Levin G (2009) From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci 32:312-320. doi: 10.1016/j.tins.2009.02.004 

  45. Behav Brain Res O Dean 198 258 2009 10.1016/j.bbr.2008.11.017 Dean O, Bush AI, Berk M et al (2009) Glutathione depletion in the brain disrupts short-term spatial memory in the Y-maze in rats and mice. Behav Brain Res 198:258-262. doi: 10.1016/j.bbr.2008.11.017 

  46. Prog Neurobiol R Dringen 62 649 2000 10.1016/S0301-0082(99)00060-X Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649-671. doi: 10.1016/S0301-0082(99)00060-X 

  47. Biochemistry AY Andreyev 70 200 2005 10.1016/j.mito.2013.01.008 Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200-214. doi: 10.1016/j.mito.2013.01.008 

  48. PLoS One R Singh 3 e2682 2008 10.1371/journal.pone.0002682 Singh R, Lemire J, Mailloux RJ, Appanna VD (2008) A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS One 3:e2682. doi: 10.1371/journal.pone.0002682 

  49. Free Radic Res J Gutierrez-Correa 27 543 1997 10.3109/10715769709097858 Gutierrez-Correa J, Stoppani AO (1997) Inactivation of yeast glutathione reductase by Fenton systems: effect of metal chelators, catecholamines and thiol compounds. Free Radic Res 27:543-555 

  50. Brain Res TF Ejchel-Cohen 1090 156 2006 10.1016/j.brainres.2006.03.062 Ejchel-Cohen TF, Wood GE, Wang J-F et al (2006) Chronic restraint stress decreases the expression of glutathione S-transferase pi2 in the mouse hippocampus. Brain Res 1090:156-162. doi: 10.1016/j.brainres.2006.03.062 

  51. Br J Psychiatry PJ Shah 172 527 1998 10.1192/bjp.172.6.527 Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM (1998) Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 172:527-532. doi: 10.1192/bjp.172.6.527 

  52. Arch Gen Psychiatry S Heckers 48 1002 1991 10.1001/archpsyc.1991.01810350042006 Heckers S, Heinsen H, Geiger B, Beckmann H (1991) Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 48:1002-1008. doi: 10.1001/archpsyc.1991.01810350042006 

  53. Am J Psychiatry IC Wright 157 16 2000 10.1176/ajp.157.1.16 Wright IC, Rabe-Hesketh S, Woodruff PWR et al (2000) Meta-analysis of regional brain volumes in Schizophrenia. Am J Psychiatry 157:16-25. doi: 10.1176/ajp.157.1.16 

  54. Annu Rev Biochem A Meister 52 711 1983 10.1146/annurev.bi.52.070183.003431 Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711-760. doi: 10.1146/annurev.bi.52.070183.003431 

  55. Neuro Endocrinol Lett P Galecki 30 357 2009 Galecki P, Szemraj J, Zboralski K et al (2009) Relation between functional polymorphism of catalase gene (−262C > T) and recurrent depressive disorder. Neuro Endocrinol Lett 30:357-362 

  56. J Neurosci AY Abramov 27 1129 2007 10.1523/JNEUROSCI.4468-06.2007 Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129-1138 

  57. Biol Psychiatry S Schiavone 66 384 2009 10.1016/j.biopsych.2009.04.033 Schiavone S, Sorce S, Dubois-Dauphin M et al (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66:384-392. doi: 10.1016/j.biopsych.2009.04.033 

  58. Bipolar Disord AL Lee 4 117 2002 10.1034/j.1399-5618.2002.01144.x Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117-128. doi: 10.1034/j.1399-5618.2002.01144.x 

  59. J Psychiatr Res M Moretti 46 331 2012 10.1016/j.jpsychires.2011.11.009 Moretti M, Colla A, de Oliveira Balen G et al (2012) Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res 46:331-340. doi: 10.1016/j.jpsychires.2011.11.009 

  60. Brain Res ES Chung 1363 143 2010 10.1016/j.brainres.2010.09.049 Chung ES, Chung YC, Bok E et al (2010) Fluoxetine prevents LPS-induced degeneration of nigral dopaminergic neurons by inhibiting microglia-mediated oxidative stress. Brain Res 1363:143-150. doi: 10.1016/j.brainres.2010.09.049 

  61. Neurosci Lett I Mendez-David 597 121 2015 10.1016/j.neulet.2015.04.036 Mendez-David I, Tritschler L, El Ali Z et al (2015) Nrf2-signaling and BDNF: a new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett 597:121-126. doi: 10.1016/j.neulet.2015.04.036 

  62. Mol Cell Biochem C Curti 199 103 1999 10.1023/A:1006912010550 Curti C, Mingatto FE, Polizello AC et al (1999) Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 199:103-109. doi: 10.1023/A:1006912010550 

  63. Biochem Pharmacol P Seeman 26 1741 1977 10.1016/0006-2952(77)90340-9 Seeman P (1977) Anti-schizophrenic drugs-membrane receptor sites of action. Biochem Pharmacol 26:1741-1748. doi: 10.1016/0006-2952(77)90340-9 

  64. Prog Neuropsychopharmacol Biol Psychiatry A Zafir 33 220 2009 10.1016/j.pnpbp.2008.11.010 Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 33:220-228. doi: 10.1016/j.pnpbp.2008.11.010 

  65. Adv Exp Med Biol G Huether 398 299 1996 10.1007/978-1-4613-0381-7_47 Huether G, Schuff-Werner P (1996) Platelet serotonin acts as a locally releasable antioxidant. Adv Exp Med Biol 398:299-306 

  66. J Affect Disord P Bob 120 231 2010 10.1016/j.jad.2009.03.017 Bob P, Raboch J, Maes M et al (2010) Depression, traumatic stress and interleukin-6. J Affect Disord 120:231-234. doi: 10.1016/j.jad.2009.03.017 

  67. Am J Geriatr Psychiatry BS Diniz 18 172 2010 10.1097/JGP.0b013e3181c2947f Diniz BS, Teixeira AL, Talib L et al (2010) Interleukin-1beta serum levels is increased in antidepressant-free elderly depressed patients. Am J Geriatr Psychiatry 18:172-176. doi: 10.1097/JGP.0b013e3181c2947f 

  68. Brain Behav Immun A O’Donovan 24 1074 2010 10.1016/j.bbi.2010.03.003 O’Donovan A, Hughes BM, Slavich GM et al (2010) Clinical anxiety, cortisol and interleukin-6: evidence for specificity in emotion-biology relationships. Brain Behav Immun 24:1074-1077. doi: 10.1016/j.bbi.2010.03.003 

  69. Neurosci Biobehav Rev B Leonard 36 764 2012 10.1016/j.neubiorev.2011.12.005 Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764-785. doi: 10.1016/j.neubiorev.2011.12.005 

  70. Mol Psychiatry H Engler 2017 10.1038/mp.2016.264 Engler H, Brendt P, Wischermann J et al (2017) Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: association with depressive symptoms. Mol Psychiatry. doi: 10.1038/mp.2016.264 

  71. Prog Neuro-Psychopharmacology Biol Psychiatry M Kubera 35 744 2011 10.1016/j.pnpbp.2010.08.026 Kubera M, Obuchowicz E, Goehler L et al (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuro-Psychopharmacology Biol Psychiatry 35:744-759. doi: 10.1016/j.pnpbp.2010.08.026 

  72. Science ML Monje 302 1760 2003 10.1126/science.1088417 Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760-1765. doi: 10.1126/science.1088417 

  73. Brazilian J Med Biol Res CD Munhoz 41 1037 2008 10.1590/S0100-879X2008001200001 Munhoz CD, García-Bueno B, Madrigal JLM et al (2008) Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Brazilian J Med Biol Res 41:1037-1046. doi: 10.1590/S0100-879X2008001200001 

  74. J Exp Biol RH McCusker 216 84 2013 10.1242/jeb.073411 McCusker RH, Kelley KW (2013) Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol 216:84-98. doi: 10.1242/jeb.073411 

  75. Neurochem Res B Tagliari 36 487 2011 10.1007/s11064-010-0367-0 Tagliari B, Tagliari AP, Schmitz F et al (2011) Chronic variable stress alters inflammatory and cholinergic parameters in hippocampus of rats. Neurochem Res 36:487-493. doi: 10.1007/s11064-010-0367-0 

  76. Behav Brain Res Z You 225 135 2011 10.1016/j.bbr.2011.07.006 You Z, Luo C, Zhang W et al (2011) Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 225:135-141. doi: 10.1016/j.bbr.2011.07.006 

  77. Expert Opin Investig Drugs TM Fonseka 24 459 2015 10.1517/13543784.2014.998334 Fonseka TM, McIntyre RS, Soczynska JK, Kennedy SH (2015) Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin Investig Drugs 24:459-475. doi: 10.1517/13543784.2014.998334 

  78. Neurobiol Dis S Chourbaji 23 587 2006 10.1016/j.nbd.2006.05.001 Chourbaji S, Urani A, Inta I et al (2006) IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 23:587-594. doi: 10.1016/j.nbd.2006.05.001 

  79. J Neurochem RH Lipsky 78 254 2001 10.1046/j.1471-4159.2001.00386.x Lipsky RH, Xu K, Zhu D et al (2001) Nuclear factor kappaB is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection. J Neurochem 78:254-264. doi: 10.1046/j.1471-4159.2001.00386.x 

  80. Biol Psychiatry BK Szasz 62 1303 2007 10.1016/j.biopsych.2007.04.014 Szasz BK, Mike A, Karoly R et al (2007) Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system. Biol Psychiatry 62:1303-1309. doi: 10.1016/j.biopsych.2007.04.014 

  81. Exp Neurol S Hashioka 206 33 2007 10.1016/j.expneurol.2007.03.022 Hashioka S, Klegeris A, Monji A et al (2007) Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol 206:33-42. doi: 10.1016/j.expneurol.2007.03.022 

  82. Behav Brain Res T-H Wu 193 183 2008 10.1016/j.bbr.2008.05.009 Wu T-H, Lin C-H (2008) IL-6 mediated alterations on immobile behavior of rats in the forced swim test via ERK1/2 activation in specific brain regions. Behav Brain Res 193:183-191. doi: 10.1016/j.bbr.2008.05.009 

  83. Neuropsychopharmacology J Hannestad 36 2452 2011 10.1038/npp.2011.132 Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452-2459. doi: 10.1038/npp.2011.132 

  84. J Neurosci Res C-M Lim 87 1037 2009 10.1002/jnr.21899 Lim C-M, Kim S-W, Park J-Y et al (2009) Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res 87:1037-1045. doi: 10.1002/jnr.21899 

  85. Clin Neuropharmacol S Englisch 33 257 2010 10.1097/WNF.0b013e3181f5a5f9 Englisch S, Inta D, Esser A, Zink M (2010) Bupropion for depression in Schizophrenia. Clin Neuropharmacol 33:257-259. doi: 10.1097/WNF.0b013e3181f5a5f9 

  86. Int Immunopharmacol D Brustolim 6 903 2006 10.1016/j.intimp.2005.12.007 Brustolim D, Ribeiro-dos-Santos R, Kast RE et al (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6:903-907. doi: 10.1016/j.intimp.2005.12.007 

  87. Int Immunopharmacol M Maes 5 609 2005 10.1016/j.intimp.2004.11.008 Maes M, Kenis G, Kubera M et al (2005) The negative immunoregulatory effects of fluoxetine in relation to the cAMP-dependent PKA pathway. Int Immunopharmacol 5:609-618. doi: 10.1016/j.intimp.2004.11.008 

  88. New York KJO Riordan 26 4870 2006 10.1523/JNEUROSCI.4527-05.2006 Riordan KJO, Huang I, Pizzi M et al (2006) Regulation of nuclear factor B in the hippocampus by group I metabotropic glutamate receptors. New York 26:4870-4879. doi: 10.1523/JNEUROSCI.4527-05.2006 

  89. Behav Brain Res D Inta 247 227 2013 10.1016/j.bbr.2013.03.036 Inta D, Vogt MA, Pfeiffer N et al (2013) Dichotomy in the anxiolytic versus antidepressant effect of C-terminal truncation of the GluN2A subunit of NMDA receptors. Behav Brain Res 247:227-231. doi: 10.1016/j.bbr.2013.03.036 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로