$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns 원문보기

Micromachines, v.10 no.1, 2019년, pp.67 -   

Seo, Yeong-Hyeon (Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea) ,  Hwang, Kyungmin (yseo@kaist.ac.kr (Y.-H.S.)) ,  Kim, Hyunwoo (k.hwang@kaist.ac.kr (K.H.)) ,  Jeong, Ki-Hun (hkim151@kaist.ac.kr (H.K.))

Abstract AI-Helper 아이콘AI-Helper

Scanning MEMS (micro-electro-mechanical system) mirrors are attractive given their potential use in a diverse array of laser scanning display and imaging applications. Here we report on an electrostatic MEMS mirror for high definition and high frame rate (HDHF) Lissajous scanning. The MEMS mirror co...

주제어

참고문헌 (31)

  1. 1. Hofmann U. Janes J. Quenzer H.-J. High-Q MEMS Resonators for Laser Beam Scanning Displays Micromachines 2012 3 509 528 10.3390/mi3020509 

  2. 2. Hofmann U. Senger F. Janes J. Mallas C. Stenchly V. von Wantoch T. Quenzer H.-J. Weiss M. Wafer-level vacuum-packaged two-axis MEMS scanning mirror for pico-projector application Proc. SPIE 2014 8977 89770A 10.1117/12.2038249 

  3. 3. Hung A.C.L. Lai H.Y.H. Lin T.W. Fu S.G. Lu M.S.C. An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display Sens. Actuators A Phys. 2015 222 122 129 10.1016/j.sna.2014.10.008 

  4. 4. Yalcinkaya A.D. Urey H. Brown D. Montague T. Sprague R. Two-axis electromagnetic microscanner for high resolution displays J. Microelectromech. Syst. 2006 15 786 794 10.1109/JMEMS.2006.879380 

  5. 5. Wang D. Strassle S. Stainsby A. Bai Y. Koppal S. Xie H. A compact 3D lidar based on an electrothermal two-axis MEMS scanner for small UAV Proceedings of the SPIE Defense + Security Orlando, FL, USA 17–19 April 2018 7 

  6. 6. Zhang X. Koppal S.J. Zhang R. Zhou L. Butler E. Xie H. Wide-angle structured light with a scanning MEMS mirror in liquid Opt. Express 2016 24 3479 3487 10.1364/OE.24.003479 26907006 

  7. 7. Petitgrand S. Yahiaoui R. Danaie K. Bosseboeuf A. Gilles J.P. 3D measurement of micromechanical devices vibration mode shapes with a stroboscopic interferometric microscope Opt. Lasers Eng. 2001 36 77 101 10.1016/S0143-8166(01)00040-9 

  8. 8. Chudnovsky A. Golberg A. Linzon Y. Monitoring complex monosaccharide mixtures derived from macroalgae biomass by combined optical and microelectromechanical techniques Proc. Biochem. 2018 68 136 145 10.1016/j.procbio.2018.01.018 

  9. 9. Seo Y.-H. Hwang K. Jeong K.-H. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner Opt. Express 2018 26 4780 4785 10.1364/OE.26.004780 29475322 

  10. 10. Hwang K. Seo Y.-H. Jeong K.-H. Microscanners for optical endomicroscopic applications Micro Nano Syst. Lett. 2017 5 1 10.1186/s40486-016-0036-4 

  11. 11. Piyawattanametha W. Ra H. Qiu Z. Friedland S. Liu J.T.C. Loewke K. Kino G.S. Solgaard O. Wang T.D. Mandella M.J. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract J. Biomed. Opt. 2012 17 021102 10.1117/1.JBO.17.2.021102 22463020 

  12. 12. Jung W. Tang S. McCormic D.T. Xie T. Ahn Y.-C. Su J. Tomov I.V. Krasieva T.B. Tromberg B.J. Chen Z. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy Opt. Lett. 2008 33 1324 1326 10.1364/OL.33.001324 18552946 

  13. 13. Dickensheets D.L. Kino G.S. Micromachined scanning confocal optical microscope Opt. Lett. 1996 21 764 766 10.1364/OL.21.000764 19876151 

  14. 14. Rivera D.R. Brown C.M. Ouzounov D.G. Pavlova I. Kobat D. Webb W.W. Xu C. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue Proc. Natl. Acad. Sci. USA 2011 108 17598 17603 10.1073/pnas.1114746108 22006303 

  15. 15. Seo Y.-H. Hwang K. Park H.-C. Jeong K.-H. Electrothermal MEMS fiber scanner for optical endomicroscopy Opt. Express 2016 24 3903 3909 10.1364/OE.24.003903 26907043 

  16. 16. Park H.-C. Seo Y.-H. Jeong K.-H. Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation Opt. Express 2014 22 5818 5825 10.1364/OE.22.005818 24663919 

  17. 17. Holmström S.T.S. Baran U. Urey H. MEMS Laser Scanners: A Review J. Microelectromech. Syst. 2014 23 259 275 10.1109/JMEMS.2013.2295470 

  18. 18. Morrison J. Imboden M. Little T.D. Bishop D. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability Opt. Express 2015 23 9555 9566 10.1364/OE.23.009555 25968784 

  19. 19. Hah D. Patterson P.R. Nguyen H.D. Toshiyoshi H. Wu M.C. Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors IEEE J. Sel. Top. Quantum Electron. 2004 10 505 513 10.1109/JSTQE.2004.829200 

  20. 20. Urey H. Torsional MEMS scanner design for high-resolution display systems Opt. Scanning II Proc. SPIE 2002 4773 27 37 10.1117/12.469198 

  21. 21. Schenk H. Dürr P. Kunze D. Lakner H. Kück H. A Resonantly excited 2D-micro-scanning-mirror with large deflection Sens. Actuators A Phys. 2001 89 104 111 10.1016/S0924-4247(00)00529-X 

  22. 22. Kim J. Christensen D. Lin L. Monolithic 2-D scanning mirror using self-aligned angular vertical comb drives IEEE Photonics Technol. Lett. 2005 17 2307 2309 10.1109/LPT.2005.857612 

  23. 23. Arslan A. Brown D. Davis W.O. Holmström S. Gokce S.K. Urey H. Comb-actuated resonant torsional microscanner with mechanical amplification J. Microelectromech. Syst. 2010 19 936 943 10.1109/JMEMS.2010.2048095 

  24. 24. Cho A.R. Han A. Ju S. Jeong H. Park J.-H. Kim I. Bu J.-U. Ji C.-H. Electromagnetic biaxial microscanner with mechanical amplification at resonance Opt. Express 2015 23 16792 16802 10.1364/OE.23.016792 26191691 

  25. 25. Urey H. Wine D.W. Osborn T.D. Optical performance requirements for MEMS-scanner-based microdisplays Proc. SPIE 2000 4178 176 185 10.1117/12.396486 

  26. 26. Hoy C.L. Durr N.J. Ben-Yakar A. Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information Appl. Opt. 2011 50 2376 2382 10.1364/AO.50.002376 21629316 

  27. 27. Hwang K. Seo Y.H. Ahn J. Kim P. Jeong K.H. Frequency selection rule for high definition and high frame rate Lissajous scanning Sci. Rep. 2017 7 1 8 10.1038/s41598-017-13634-3 28127051 

  28. 28. Liu X. Cobb M.J. Chen Y. Kimmey M.B. Li X. Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography Opt. Lett. 2004 29 1763 1765 10.1364/OL.29.001763 15352362 

  29. 29. Park H.-C. Seo Y.-H. Hwang K. Lim J.-K. Yoon S.Z. Jeong K.-H. Micromachined tethered silicon oscillator for an endomicroscopic Lissajous fiber scanner Opt. Lett. 2014 39 6675 6678 10.1364/OL.39.006675 25490650 

  30. 30. Chiu Y.-S.S. Chang K.-S.J. Johnstone R.W. Parameswaran M. Fuse-tethers in MEMS J. Micromech. Microeng. 2006 16 480 10.1088/0960-1317/16/3/002 

  31. 31. Jiunn-Horng L. Sheng-Ta L. Chih-Min Y. Weileun F. Comments on the size effect on the microcantilever quality factor in free air space J. Micromech. Microeng. 2007 17 139 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로