$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Rationally designed catalyst layers toward “immortal” growth of carbon nanotube forests: Fe-ion implanted substrates

Carbon, v.152, 2019년, pp.482 - 488  

Lee, Cheol-Hun (Department of Chemical Engineering, Pohang University of Science & Technology) ,  Lee, Jaegeun (Department of Industrial Engineering, University of Pittsburgh) ,  Park, Junbeom (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ,  Lee, Eunyoung (Department of Chemical Engineering, Pohang University of Science & Technology) ,  Kim, Seung Min (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ,  Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science & Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract To increase the length and coherence of carbon nanotube (CNT) forests that are grown by chemical vapor deposition, we implant Fe ions into an Al2O3 supporting layer to weaken the gradient of Fe concentration when Fe catalyst layer is deposited on it. The weakened gradient slows loss of Fe ...

참고문헌 (50)

  1. Phys. Rev. B Zhao 65 14 144105 2002 10.1103/PhysRevB.65.144105 Ultimate strength of carbon nanotubes: a theoretical study 

  2. Phys. Rev. B Ogata 68 16 165409 2003 10.1103/PhysRevB.68.165409 Ideal tensile strength and band gap of single-walled carbon nanotubes 

  3. Science Yu 287 5453 637 2000 10.1126/science.287.5453.637 Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load 

  4. Nat. Nanotechnol. Peng 3 10 626 2008 10.1038/nnano.2008.211 Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements 

  5. Science Vigolo 290 5495 1331 2000 10.1126/science.290.5495.1331 Macroscopic fibers and ribbons of oriented carbon nanotubes 

  6. Science Li 304 5668 276 2004 10.1126/science.1094982 Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis 

  7. Science Zhang 306 5700 1358 2004 10.1126/science.1104276 Multifunctional carbon nanotube yarns by downsizing an ancient Technology 

  8. Science Behabtu 339 6116 182 2013 10.1126/science.1228061 Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity 

  9. Compos. Sci. Technol. Jung 166 95 2018 10.1016/j.compscitech.2018.02.010 How can we make carbon nanotube yarn stronger? 

  10. Science Koziol 318 5858 1892 2007 10.1126/science.1147635 High-performance carbon nanotube fiber 

  11. Nano Lett. Xu 16 2 946 2016 10.1021/acs.nanolett.5b03863 High-strength carbon nanotube film from improving alignment and densification 

  12. ACS Appl. Mater. Interfaces Tsentalovich 9 41 36189 2017 10.1021/acsami.7b10968 Influence of carbon nanotube characteristics on macroscopic fiber properties 

  13. Nano Lett. Motta 5 8 1529 2005 10.1021/nl050634+ Mechanical properties of continuously spun fibers of carbon nanotubes 

  14. Carbon Cho 136 409 2018 10.1016/j.carbon.2018.04.071 Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching 

  15. Nat. Nanotechnol. Bai 13 589 2018 10.1038/s41565-018-0141-z Carbon nanotube bundles with tensile strength over 80 GPa 

  16. ACS Nano Esconjauregui 4 12 7431 2010 10.1021/nn1025675 Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects 

  17. J. Phys. Chem. C Bedewy 113 48 20576 2009 10.1021/jp904152v Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth 

  18. Chem. Phys. Lett. Maruyama 403 4-6 320 2005 10.1016/j.cplett.2005.01.031 Growth process of vertically aligned single-walled carbon nanotubes 

  19. J. Phys. Chem. C Nishino 111 48 17961 2007 10.1021/jp0723719 Water-assisted highly efficient synthesis of single-walled carbon nanotubes forests from colloidal nanoparticle catalysts 

  20. Arakawa 

  21. ACS Nano Yasuda 3 12 4164 2009 10.1021/nn9007302 Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction 

  22. Carbon Cho 72 264 2014 10.1016/j.carbon.2014.01.074 Growth and characterization of vertically aligned centimeter long CNT arrays 

  23. Carbon Lee 93 217 2015 10.1016/j.carbon.2015.05.080 The influence of boundary layer on the growth kinetics of carbon nanotube forests 

  24. Appl. Phys. A Rouleau 93 4 1005 2008 10.1007/s00339-008-4775-9 Altering the catalytic activity of thin metal catalyst films for controlled growth of chemical vapor deposited vertically aligned carbon nanotube arrays 

  25. Science Hata 306 5700 1362 2004 10.1126/science.1104962 Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes 

  26. Appl. Phys. A Puretzky 81 2 223 2005 10.1007/s00339-005-3256-7 Ivanov IN, Eres G. In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition 

  27. Nano Lett. Yamada 8 12 4288 2008 10.1021/nl801981m Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts 

  28. Nano Lett. Amama 9 1 44 2008 10.1021/nl801876h Role of water in super growth of single-walled carbon nanotube carpets 

  29. J. Phys. Chem. Lett. Kim 1 6 918 2010 10.1021/jz9004762 Evolution in catalyst morphology leads to carbon nanotube growth termination 

  30. Nanotechnology Li 19 45 455609 2008 10.1088/0957-4484/19/45/455609 Air-assisted growth of ultra-long carbon nanotube bundles 

  31. J. Phys. Chem. C Zhang 114 14 6389 2010 10.1021/jp100358j Ethanol-promoted high-yield growth of few-walled carbon nanotubes 

  32. Nanoscale Shawat 6 3 1545 2014 10.1039/C3NR05240K What is below the support layer affects carbon nanotube growth: an iron catalyst reservoir yields taller nanotube carpets 

  33. Science Fan 283 5401 512 1999 10.1126/science.283.5401.512 Self-oriented regular arrays of carbon nanotubes and their field emission properties 

  34. J. Phys. Chem. B Hart 110 16 8250 2006 10.1021/jp055498b Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst 

  35. Nano Lett. Hofmann 7 3 602 2007 10.1021/nl0624824 In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation 

  36. Carbon Huynh 48 4 1105 2010 10.1016/j.carbon.2009.11.032 Understanding the synthesis of directly spinnable carbon nanotube forests 

  37. Appl. Catal. Gen. Moulijn 212 1 3 2001 10.1016/S0926-860X(00)00842-5 Catalyst deactivation: is it predictable?: what to do? 

  38. ACS Nano Amama 4 2 895 2010 10.1021/nn901700u Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth 

  39. Nanoscale Jeong 8 4 2055 2016 10.1039/C5NR05547D Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination 

  40. J. Am. Chem. Soc. Sakurai 134 4 2148 2012 10.1021/ja208706c Role of subsurface diffusion and Ostwald ripening in catalyst formation for single-walled carbon nanotube forest growth 

  41. Nat. Commun. Hu 6 6099 2015 10.1038/ncomms7099 Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts 

  42. J. Phys. Chem. C Leveneur 115 43 20978 2011 10.1021/jp206357c Nucleation and growth of Fe nanoparticles in SiO2: a TEM, XPS, and Fe L-edge XANES investigation 

  43. Nano Lett. Hart 6 6 1254 2006 10.1021/nl0524041 Force output, control of film structure, and microscale shape transfer by carbon nanotube growth under mechanical pressure 

  44. Nanoscale Bedewy 5 7 2928 2013 10.1039/c3nr34067h Mechanical coupling limits the density and quality of self-organized carbon nanotube growth 

  45. ACS Nano Han 2 1 53 2008 10.1021/nn700200c A mechanochemical model of growth termination in vertical carbon nanotube forests 

  46. J. Phys. Chem. B Zhu 110 11 5445 2006 10.1021/jp060027q Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics 

  47. J. Phys. Chem. C Chakrabarti 112 22 8136 2008 10.1021/jp802059t Structural evaluation along the nanotube length for super-long vertically aligned double-walled carbon nanotube Arrays 

  48. J. Mater. Sci. Lee 48 20 6897 2013 10.1007/s10853-013-7494-3 The reason for an upper limit to the height of spinnable carbon nanotube forests 

  49. Nano Lett. Yasuda 9 2 769 2009 10.1021/nl803389v Existence and kinetics of graphitic carbonaceous impurities in carbon nanotube forests to assess the absolute purity 

  50. APEX Hasegawa 3 4 2010 Diameter increase in millimeter-tall vertically aligned single-walled carbon nanotubes during growth 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로