$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Large Family of AvrLm6 -like Genes in the Apple and Pear Scab Pathogens, Venturia inaequalis and Venturia pirina 원문보기

Frontiers in plant science, v.6, 2015년, pp.980 -   

Shiller, Jason (Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, Melbourne VIC, Australia) ,  Van de Wouw, Angela P. (School of BioSciences, University of Melbourne, Parkville VIC, Australia) ,  Taranto, Adam P. (Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, Melbourne VIC, Australia) ,  Bowen, Joanna K. (The New Zealand Institute for Plant and Food Research Limited Auckland, New Zealand) ,  Dubois, David (School of BioSciences, University of Melbourne, Parkville VIC, Australia) ,  Robinson, Andrew (Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, Melbourne VIC, Australia) ,  Deng, Cecilia H. (The New Zealand Institute for Plant and Food Research Limited Auckland, New Zealand) ,  Plummer, Kim M. (Animal, Plant and)

Abstract AI-Helper 아이콘AI-Helper

Venturia inaequalis and V. pirina are Dothideomycete fungi that cause apple scab and pear scab disease, respectively. Whole genome sequencing of V. inaequalis and V. pirina isolates has revealed predicted proteins with sequence similarity to AvrLm6, a Leptosphaeria maculans effector that triggers a ...

주제어

참고문헌 (62)

  1. Balesdent M. H. Attard A. Kühn M. L. Rouxel T. ( 2002 ). New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans . Phytopathology 92 1122 – 1133 . 10.1094/PHYTO.2002.92.10.1122 18944223 

  2. Balesdent M.-H. Fudal I. Ollivier B. Bally P. Grandaubert J. Eber F. ( 2013 ). The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa . New Phytol. 198 887 – 898 . 10.1111/nph.12178 23406519 

  3. Balesdent M.-H. Louvard K. Pinochet X. Rouxel T. ( 2006 ). A large-scale survey of races of Leptosphaeria maculans occurring on oilseed rape in France. Eur. J. Plant Pathol. 114 53 – 65 . 10.1007/s10658-005-2104-0 

  4. Belfanti E. Silfverberg-Dilworth E. Tartarini S. Patocchi A. Barbieri M. Zhu J. ( 2004 ). The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc. Natl. Acad. Sci. U.S.A. 101 886 – 890 . 10.1073/pnas.0304808101 14715897 

  5. Bowen J. K. Mesarich C. H. Bus V. G. M. Beresford R. M. Plummer K. M. Templeton M. D. ( 2011 ). Venturia inaequalis : the causal agent of apple scab. Mol. Plant Pathol. 12 105 – 122 . 10.1111/j.1364-3703.2010.00656.x 21199562 

  6. Bowen J. K. Mesarich C. H. Rees-George J. Cui W. Fitzgerald A. Win J. ( 2009 ). Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. Mol. Plant Pathol. 10 431 – 448 . 10.1111/j.1364-3703.2009.00543.x 19400844 

  7. Broggini G. A. L. Bus V. G. M. Parravicini G. Kumar S. Groenwold R. Gessler C. ( 2011 ). Genetic mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of Venturia inaequalis . Fungal Genet. Biol. 48 166 – 176 . 10.1016/j.fgb.2010.09.001 20837155 

  8. Brun H. Levivier S. Somda I. Ruer D. Renard M. Chèvre A. M. ( 2000 ). A field method for evaluating the potential durability of new resistance sources: application to the Leptosphaeria maculans - Brassica napus pathosystem. Phytopathology 90 961 – 966 . 10.1094/PHYTO.2000.90.9.961 18944519 

  9. Bus V. G. M. Rikkerink E. H. A. Caffier V. Durel C.-E. Plummer K. M. ( 2011 ). Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus . Annu. Rev. Phytopathol. 49 391 – 413 . 10.1146/annurev-phyto-072910-095339 21599495 

  10. Caffier V. Patocchi A. Expert P. Bellanger M.-N. Durel C.-E. Hilber-Bodmer M. ( 2015 ). Virulence characterization of Venturia inaequalis reference isolates on the differential set of Malus hosts. Plant Dis. 99 370 – 375 . 10.1094/PDIS-07-14-0708-RE 

  11. Cambareri E. Jensen B. Schabtach E. Selker E. ( 1989 ). Repeat-induced G-C to A-T mutations in Neurospora . Science 244 1571 – 1575 . 10.1126/science.2544994 2544994 

  12. Chang S. Puryear J. Cairney J. ( 1993 ). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11 113 – 116 . 10.1007/BF02670468 

  13. Chisholm S. T. Coaker G. Day B. Staskawicz B. J. ( 2006 ). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124 803 – 814 . 10.1016/j.cell.2006.02.008 16497589 

  14. Cooke I. R. Jones D. Bowen J. K. Deng C. Faou P. Hall N. E. ( 2014 ). Proteogenomic analysis of the Venturia pirina (Pear Scab Fungus) secretome reveals potential effectors. J. Proteome Res. 13 363536 – 363544 . 10.1021/pr500176c 

  15. Daverdin G. Rouxel T. Gout L. Aubertot J.-N. Fudal I. Meyer M. ( 2012 ). Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathog. 8 : e1003020 10.1371/journal.ppat.1003020 

  16. de Wit P. J. G. M. van der Burgt A. Ökmen B. Stergiopoulos I. Abd-Elsalam K. A. Aerts A. L. ( 2012 ). The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 8 : e1003088 10.1371/journal.pgen.1003088 

  17. Dodds P. N. Rathjen J. P. ( 2010 ). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11 539 – 548 . 10.1038/nrg2812 20585331 

  18. Elliott C. E. Howlett B. J. ( 2006 ). Overexpression of a 3-ketoacyl-CoA thiolase in Leptosphaeria maculans causes reduced pathogenicity on Brassica napus . Mol. Plant Microbe Interact. 19 588 – 596 . 10.1094/MPMI-19-0588 16776292 

  19. Fitzgerald A. M. Mudge A. M. Gleave A. P. Plummer K. M. ( 2003 ). Agrobacterium and PEG-mediated transformation of the phytopathogen Venturia inaequalis . Mycol. Res. 107 803 – 810 . 10.1017/S0953756203008086 12967207 

  20. Flutre T. Duprat E. Feuillet C. Quesneville H. ( 2011 ). Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6 : e16526 10.1371/journal.pone.0016526 

  21. Friesen T. L. Stukenbrock E. H. Liu Z. Meinhardt S. Ling H. Faris J. D. ( 2006 ). Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38 953 – 956 . 10.1038/ng1839 16832356 

  22. Fudal I. Ross S. Brun H. Besnard A.-L. Ermel M. Kuhn M.-L. ( 2009 ). Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans . Mol. Plant Microbe Interact. 22 932 – 941 . 10.1094/MPMI-22-8-0932 19589069 

  23. Fudal I. Ross S. Gout L. Blaise F. Kuhn M. L. Eckert M. R. ( 2007 ). Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol. Plant Microbe Interact. 20 459 – 470 . 10.1094/MPMI-20-4-0459 17427816 

  24. Gardiner D. M. Howlett B. J. ( 2004 ). Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans . Curr. Genet. 45 249 – 255 . 10.1007/s00294-004-0488-6 14749893 

  25. Gout L. Fudal I. Kuhn M.-L. Blaise F. Eckert M. Cattolico L. ( 2006 ). Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans . Mol. Microbiol. 60 67 – 80 . 10.1111/j.1365-2958.2006.05076.x 16556221 

  26. Gout L. Kuhn M. L. Vincenot L. Bernard-Samain S. Cattolico L. Barbetti M. ( 2007 ). Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans . Environ. Microbiol. 9 2978 – 2992 . 10.1111/j.1462-2920.2007.01408.x 17991027 

  27. Grandaubert J. Lowe R. G. T. Soyer J. L. Schoch C. L. Van de Wouw A. P. Fudal I. ( 2014 ). Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans - Leptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics 15 : 891 10.1186/1471-2164-15-891 

  28. Guyon K. Balagué C. Roby D. Raffaele S. ( 2014 ). Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 15 : 336 10.1186/1471-2164-15-336 

  29. Heckman K. L. Pease L. R. ( 2007 ). Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Protoc. 2 924 – 932 . 10.1038/nprot.2007.132 17446874 

  30. Huang Y. J. Balesdent M. H. Li Z. Q. Evans N. Rouxel T. Fitt B. D. L. ( 2010 ). Fitness cost of virulence differs between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur. J. Plant Pathol. 126 279 – 291 . 10.1007/s10658-009-9539-7 

  31. Huang Y.-J. Li Z.-Q. Evans N. Rouxel T. Fitt B. D. L. Balesdent M.-H. ( 2006 ). Fitness cost associated with loss of the AvrLm4 Avirulence function in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur. J. Plant Pathol. 114 77 – 89 . 10.1007/s10658-005-2643-4 

  32. Jones J. D. G. Dangl J. L. ( 2006 ). The plant immune system. Nature 444 323 – 329 . 10.1038/nature05286 17108957 

  33. Kalendar R. Vicient C. M. Peleg O. Anamthawat-Jonsson K. Bolshoy A. Schulman A. H. ( 2004 ). Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166 1437 – 1450 . 10.1534/genetics.166.3.1437 15082561 

  34. Kucheryava N. Bowen J. K. Sutherland P. W. Conolly J. J. Mesarich C. H. Rikkerink E. H. A. ( 2008 ). Two novel Venturia inaequalis genes induced upon morphogenetic differentiation during infection and in vitro growth on cellophane. Fungal Genet. Biol. 45 1329 – 1339 . 10.1016/j.fgb.2008.07.010 18692586 

  35. Labbé J. Murat C. Morin E. Tuskan G. A. Le Tacon F. Martin F. ( 2012 ). Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor . PLoS ONE 7 : e40197 10.1371/journal.pone.0040197 

  36. Le Cam B. Parisi L. Arene L. ( 2002 ). Evidence of two formae speciales in Venturia inaequalis . Responsible for Apple and Pyracantha Scab. Phytopathology 92 314 – 320 . 10.1094/PHYTO.2002.92.3.314 18944005 

  37. Mesarich C. H. Stergiopoulos I. Beenen H. G. Cordovez V. Guo Y. Karimi Jashni M. ( 2015 ). A conserved proline residue in Dothideomycete Avr4 effector proteins is required to trigger a Cf-4-dependent hypersensitive response. Mol. Plant Pathol. 10.1111/mpp.12265 [Epub ahead of print] . 

  38. Nagaki K. Neumann P. Zhang D. Ouyang S. Buell C. R. Cheng Z. ( 2005 ). Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol. Biol. Evol. 22 845 – 855 . 10.1093/molbev/msi069 15616142 

  39. Parlange F. Daverdin G. Fudal I. Kuhn M.-L. Balesdent M.-H. Blaise F. ( 2009 ). Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Mol. Microbiol. 71 851 – 863 . 10.1111/j.1365-2958.2008.06547.x 19170874 

  40. Pereira J. F. Araújo E. F. Brommonschenkel S. H. Queiroz C. B. Costa G. G. L. Carazzolle M. F. ( 2015 ). MpSaci is a widespread gypsy-Ty3 retrotransposon highly represented by non-autonomous copies in the Moniliophthora perniciosa genome. Curr. Genet. 61 185 – 202 . 10.1007/s00294-014-0469-3 25614078 

  41. Quinlan A. R. Hall I. M. ( 2010 ). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26 841 – 842 . 10.1093/bioinformatics/btq033 20110278 

  42. Raffaele S. Kamoun S. ( 2012 ). Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10 417 – 430 . 10.1038/nrmicro2790 22565130 

  43. Rouxel T. Grandaubert J. Hane J. K. Hoede C. van de Wouw A. P. Couloux A. ( 2011 ). Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat. Commun. 2 : 202 10.1038/ncomms1189 

  44. Sacristán S. Vigouroux M. Pedersen C. Skamnioti P. Thordal-Christensen H. Micali C. ( 2009 ). Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons. PLoS ONE 4 : e7463 10.1371/journal.pone.0007463 

  45. Sampath P. Yang T.-J. ( 2014 ). Comparative analysis of Cassandra TRIMs in three Brassicaceae genomes. Plant Genet. Resour. 12 S146 – S150 . 10.1017/S1479262114000446 

  46. Saunders D. G. O. Win J. Cano L. M. Szabo L. J. Kamoun S. Raffaele S. ( 2012 ). Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS ONE 7 : e29847 10.1371/journal.pone.0029847 

  47. Schouten H. J. Brinkhuis J. Burgh A. Schaart J. G. Groenwold R. Broggini G. A. L. ( 2013 ). Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet. Genomes 10 251 – 260 . 10.1007/s11295-013-0678-9 

  48. Soanes D. Richards T. A. ( 2014 ). Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52 583 – 614 . 10.1146/annurev-phyto-102313-050127 25090479 

  49. Sperschneider J. Dodds P. N. Gardiner D. M. Manners J. M. Singh K. B. Taylor J. M. ( 2015 ). Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathog. 11 : e1004806 10.1371/journal.ppat.1004806 

  50. Stachowiak A. Olechnowicz J. Jedryczka M. Rouxel T. Balesdent M.-H. Happstadius I. ( 2006 ). Frequency of avirulence alleles in field populations of Leptosphaeria maculans in Europe. Eur. J. Plant Pathol. 114 67 – 75 . 10.1007/s10658-005-2931-z 

  51. Stehmann C. Pennycook S. Plummer K. M. ( 2001 ). Molecular identification of a sexual interloper: the pear pathogen, Venturia pirina , has Sex on Apple. Phytopathology 91 633 – 641 . 10.1094/PHYTO.2001.91.7.633 18942992 

  52. Stergiopoulos I. de Wit P. J. G. M. ( 2009 ). Fungal effector proteins. Annu. Rev. Phytopathol. 47 233 – 263 . 10.1146/annurev.phyto.112408.132637 19400631 

  53. Stergiopoulos I. van den Burg H. A. Okmen B. Beenen H. G. van Liere S. Kema G. H. J. ( 2010 ). Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc. Natl. Acad. Sci. U.S.A. 107 7610 – 7615 . 10.1073/pnas.1002910107 20368413 

  54. Tamura K. Stecher G. Peterson D. Filipski A. Kumar S. ( 2013 ). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725 – 2729 . 10.1093/molbev/mst197 24132122 

  55. Thakur K. Chawla V. Bhatti S. Swarnkar M. K. Kaur J. Shankar R. ( 2013 ). De novo transcriptome sequencing and analysis for Venturia inaequalis , the devastating apple scab pathogen. PLoS ONE 8 : e53937 10.1371/journal.pone.0053937 

  56. Van de Wouw A. P. Cozijnsen A. J. Hane J. K. Brunner P. C. McDonald B. A. Oliver R. P. ( 2010 ). Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog. 6 : e1001180 10.1371/journal.ppat.1001180 

  57. Van de Wouw A. P. Lowe R. G. T. Elliott C. E. Dubois D. J. Howlett B. J. ( 2014 ). An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans , confers avirulence to Brassica juncea cultivars. Mol. Plant Pathol. 15 523 – 530 . 10.1111/mpp.12105 24279453 

  58. Vitte C. Chaparro C. Quesneville H. Panaud O. ( 2007 ). Spip and Squiq, two novel rice non-autonomous LTR retro-element families related to RIRE3 and RIRE8. Plant Sci. 172 8 – 19 . 10.1016/j.plantsci.2006.07.008 

  59. Watters M. K. Randall T. A. Margolin B. S. Selker E. U. Stadler D. R. ( 1999 ). Action of repeat-induced point mutation on both strands of a duplex and on tandem duplications of various sizes in Neurospora . Genetics 153 705 – 714 . 10511550 

  60. Win J. Greenwood D. R. Plummer K. M. ( 2003 ). Characterisation of a protein from Venturia inaequalis that induces necrosis in Malus carrying the Vm resistance gene. Physiol. Mol. Plant Pathol. 62 193 – 202 . 10.1016/S0885-5765(03)00061-4 

  61. Witte C. P. Le Q. H. Bureau T. Kumar A. ( 2001 ). Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc. Natl. Acad. Sci. U.S.A. 98 13778 – 13783 . 10.1073/pnas.241341898 11717436 

  62. Zhou Y. Cahan S. H. ( 2012 ). A novel family of terminal-repeat retrotransposon in miniature (TRIM) in the genome of the red harvester ant, Pogonomyrmex barbatus . PLoS ONE 7 : e53401 10.1371/journal.pone.0053401 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로