$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

In situ analysis of cryogenic strain of AISI 316L stainless steel using synchrotron radiation

Cryogenics, v.105, 2020년, pp.103020 -   

Crivoi, Maicon Rogerio (Department of Materials Engineering, State University of Ponta Grossa) ,  Hoyos, John Jairo (Department of Materials Engineering, State University of Ponta Grossa) ,  Izumi, Marcel Tadashi (Department of Materials Engineering, State University of Ponta Grossa) ,  de Aguiar, Denilson José (Academic Department of Mechanics, The Federal University of Technology - Paraná) ,  Marcolino ,  Namur, Ricardo Sanson (Department of Materials Engineering, State University of Ponta Grossa) ,  Terasawa, Ana Luisa (Department of Materials Engineering, State University of Ponta Grossa) ,  Cintho, Osvaldo Mitsuyuki (Department of Materials Engineering, State University of Ponta Grossa)

Abstract AI-Helper 아이콘AI-Helper

Abstract AISI 316L austenitic stainless steel was tested by simultaneous uniaxial tensile tests and X-ray diffraction measurements at room and cryogenic temperatures. The decrease in temperature reduced the stacking fault energy, which increase the rate of the martensitic transformation. This led t...

주제어

참고문헌 (48)

  1. Cryogenics Ding 101 89 2019 10.1016/j.cryogenics.2019.06.003 A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures 

  2. Cryogenics Ding 92 50 2018 10.1016/j.cryogenics.2018.04.002 Tensile properties and impact toughness of S30408 stainless steel and its welded joints at cryogenic temperatures 

  3. Thin-Walled Struct Rossi 83 182 2014 10.1016/j.tws.2014.01.021 Discussion on the use of stainless steel in constructions in view of sustainability 

  4. Mater Des Park 31-8 3630 2010 10.1016/j.matdes.2010.02.041 Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments 

  5. Int J Mech Sci Kim 87 218 2014 10.1016/j.ijmecsci.2014.06.008 A constitutive equation for predicting the material nonlinear behavior of AISI 316L, 321, and 347 stainless steel under low-temperature conditions 

  6. Mater Charact Mallick 133 77 2017 10.1016/j.matchar.2017.09.027 Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel 

  7. J Iron Steel Res Int Song 18-11 53 2011 10.1016/S1006-706X(11)60117-9 Characteristics of mechanical properties and microstructure for 316L austenitic stainless steel 

  8. Int J Plast Lebedev 16 749 2000 10.1016/S0749-6419(99)00085-6 Influence of phase transformations on the mechanical properties of austenitic stainless steels 

  9. Comput Mater Sci Lee 46 1152 2009 10.1016/j.commatsci.2009.06.003 A new constitutive model of austenitic stainless steel for cryogenic applications 

  10. Metall Trans Lecroise 3-2 387 1972 Martensitic transformations induced by plastic-deformation in Fe-Ni-Cr-C system 

  11. Procedia Eng Man 10 1279 2011 10.1016/j.proeng.2011.04.213 Stability of austenitic 316L steel against martensite formation during cyclic straining 

  12. Mater Sci Eng, A Xiong 709 270 2018 10.1016/j.msea.2017.10.067 Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel 

  13. J Nucl Mater Han 504 29 2018 10.1016/j.jnucmat.2018.03.019 Deformation behavior of austenitic stainless steel at deep cryogenic temperatures 

  14. Mater Sci Eng, A Park 528 5790 2011 10.1016/j.msea.2011.04.032 Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: Part I-Experimental investigations 

  15. Metall Trans A Hecker 13A 619 1982 10.1007/BF02644427 Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel - Part I. magnetic measurements and mechanical behavior 

  16. ISIJ Int Tsuchida 51-1 124 2011 10.2355/isijinternational.51.124 Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel 

  17. ISIJ Int Tsuchida 53-10 1881 2013 10.2355/isijinternational.53.1881 Effects of temperature and strain rate on trip effect in SUS301L metastable austenitic stainless steel 

  18. Acta Mater Talonen 55-18 6108 2007 10.1016/j.actamat.2007.07.015 Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels 

  19. Comput Mater Sci Yoo 50 2014 2011 10.1016/j.commatsci.2011.02.002 Temperature and strain rate dependent constitutive model of TRIP steels for low-temperature applications 

  20. Mater Des Garg 108 689 2016 10.1016/j.matdes.2016.07.028 Slag recycling in submerged arc welding and its effects on the quality of stainless steel claddings 

  21. Ame J Civil Eng Architect Faridmehr 2-1 53 2014 10.12691/ajcea-2-1-6 Correlation between engineering stress-strain and true stress-strain curve 

  22. Metall Mater Trans A Babu 36A 3281 2005 10.1007/s11661-005-0002-x In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite 

  23. Mater Res Hoyos 21-2 e20170686 2018 In situ synchrotron radiation measurements during axial strain in hydrogen cathodically charged duplex stainless steel SAF 2205 

  24. Proc Phys Soc Stokes 56-3 174 1944 10.1088/0959-5309/56/3/303 The diffraction of X rays by distorted crystal aggregates - I 

  25. Scripta Metall Matsumura 21 1301 1987 10.1016/0036-9748(87)90103-7 Trip and its kinetic aspects in austempered 0.4C-i.5Si-0.8Mn steel 

  26. Metall Trans A Schramm 6 1345 1974 10.1007/BF02641927 Stacking fault energies of seven commercial austenitic stainless steels 

  27. Mater Sci Eng, A Unfried-Silgado 558 70 2012 10.1016/j.msea.2012.07.072 Stacking fault energy measurements in solid solution strengthened Ni-Cr-Fe alloys using synchrotron radiation 

  28. Mater Sci Technol Fu 24-8 941 2008 10.1179/174328408X295962 Effect of cooling rate on solidification microstructures in AISI 304 stainless steel 

  29. ISIJ Int Padilha 43-2 135 2003 10.2355/isijinternational.43.135 Review annealing of cold-worked austenitic stainless steels 

  30. Mater Sci Eng, A Lee 515 32 2009 10.1016/j.msea.2009.02.010 Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy 

  31. ISIJ Int Takaki 34 6 522 1994 10.2355/isijinternational.34.522 Effect of induced pre-cold-working on diftusional reversion of deformation martensite in metastable austenitic stainless steel 

  32. Mater Manuf Process Ghosh 28-3 249 2013 10.1080/10426914.2012.667893 Influence of mechanical deformation and annealing on kinetics of martensite in a stainless steel 

  33. J Mater Sci Ghosh 46 3480 2011 10.1007/s10853-011-5253-x Effect of reversion of strain induced martensite on microstructure and mechanical properties in an austenitic stainless steel 

  34. J Mater Sci Kumar 45 911 2010 10.1007/s10853-009-4020-8 Role of strain-induced martensite on microstructural evolution during annealing of metastable austenitic stainless steel 

  35. Revista Materia Fava 23-2 e12114 2018 Characterization of reverse martensitic transformation in cold-rolled austenitic 316 stainless steel 

  36. ISIJ Int Tomimura 31-12 1431 1991 10.2355/isijinternational.31.1431 Reversion austenite mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels 

  37. Acta Mater Curtze 59 1068 2011 10.1016/j.actamat.2010.10.037 Thermodynamic modeling of the stacking fault energy of austenitic steels 

  38. Revista Matéria Curtze 15 157 2010 10.1590/S1517-70762010000200011 Effects of temperature and strain rate on the tensile properties of twip steels 

  39. Mater Sci Eng, A Allain 387-389 158 2004 10.1016/j.msea.2004.01.059 Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys 

  40. Int J Mech Ind Eng (IJMIE) Touseef Nauman 2-1 44 2012 Material characterization of 316L stainless steel after being subjected to cryogenic treatment 

  41. Mater Res Alves 18-2 159 2015 10.1590/1516-1439.347714 The influence of sample preparation on the quantitative analysis of the volume fraction of martensite formed in a 304L trip steel 

  42. J Test Eval Suzuki 16 190 1988 10.1520/JTE11161J Cryogenic fatigue properties of 304L and 316L stainless steels compared to mechanical strength and increasing magnetic permeability 

  43. Mater Sci Eng, A Hwang 528 7257 2011 10.1016/j.msea.2011.06.025 Correlation of austenite stability and ductile-to-brittle transition behavior of high-nitrogen 18Cr-10Mn austenitic steels 

  44. Mater Today: Proc Zhang 2S S251 2015 10.1016/j.matpr.2015.05.035 Investigation of martensite transformation in 316L stainless steel 

  45. Mater Res Abreu 10-4 359 2007 10.1590/S1516-14392007000400007 Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance 

  46. J Less-Common Met Olson 28 107 1972 10.1016/0022-5088(72)90173-7 A mechanism for the strain-induced nucleation of martensitic transformations 

  47. Acta Mater Guimaraes 84 436 2015 10.1016/j.actamat.2014.10.040 The mechanical-induced martensite transformation in Fe-Ni-C alloys 

  48. Metall Mater Trans A Talonen 36-2 421 2005 10.1007/s11661-005-0313-y Effect of strain rate on the strain-induced γ-α′ martensite transformation and mechanical properties of austenitic stainless steels 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로