$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

특이점 가중치 기반 PLSA를 이용한 객체 범주화

Object Categorization Using PLSA Based on Weighting Distinctions

초록

영상 내 사물들의 카테고리를 인식하는 연구는 시각적 영상처리와 연관된 다양한 분야에서 활발히 진행되고 있다. 객체 범주화(Object Categorization)는 가정과 같은 실내에서 책상, 의자, 컵, 주전자 등의 다양한 사물들을 구분하여 인식하는데 중요한 역할을 할 수 있다. 본 논문에서는 최근 영상 내 객체들의 카테고리 분석을 위해 연구된 PLSA를 기반으로 특이점에 가중치를 부여하여, 보다 유사한 카테고리 간에 인식 성능을 향상시키는 접근법에 대하여 연구하였다. PLSA는 문서기반의 정보검색 분야로부터 소개된 기법으로, 약한 수준의 비감독 방법임에도 불구하고 인상적인 인식성능을 보여준다. 그러나 비슷한 특징점 분포를 보이는 유사한 카테고리 간의 객체 카테고리 인식에 대해서는 비교적 낮은 성능을 보인다. 본 연구에서는 카테고리간의 비교실험을 통해 각 특징점에 대하여 가중치를 부여한 PLSA를 적용하여 유사한 객체 간의 카테고리 인식 가능성을 살펴보았다. 실험에서는 기존의 PLSA 기법과 제안한 가중치를 부여 PLSA 기법을 각각 적용하여 그 성능을 비교하였다. 본 연구에서는 기존 PLSA 기법에서는 비교적 낮은 인식률을 보인 유사한 카테고리 인식에 대하여 실험 결과를 통해 가중치를 부여한 PLSA 기법이 보다 향상된 성능을 보임을 확인하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일