$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

SVM과 온톨로지를 이용한 이미지 의미 관계 자동 추출 기법

Automatic Extraction of Semantic Relationships from Images Using Ontologies and SVM Classifiers

초록

효과적인 이미지 검색을 위하여, 이미지의 저수준 시각 정보로부터 고수준 의미 정보를 추출하는 기술에 관한 많은 연구가 이루어지고 있다. 특히 최근에는 Support Vector Machine과 같은 기계 학습 기법을 이용한 이미지 어노테이션 시스템의 개발이 활발히 진행중이이다. 그러나 기존의 연구들은 단편적인 이미지 정보만을 추출함에도 불구하고, 그 성능이 여전히 만족스럽지 못하다. 본 논문에서는 Support Vector Machine과 온톨로지를 이용하여 이미지의 다양한 정보를 효과적으로 추출 및 기술할 수 있는 시스템을 제안한다. 특히 온톨로지는 특정 도메인의 상세한 지식 표현과 추론을 위한 지식베이스로서, 본 논문에서는 Support Vector Machine을 이용하여 이미지 안에 존재하는 객체들의 컨셉을 판별하고 이미지 어노테이션 온톨로지와 생태계 온톨로지를 이용하여 공간 관계, 천적 관계와 같은 객체간 의미 관계를 자동적 자동적으로 추출하는 방법을 제안한다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일