$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

퍼지 논리를 이용한 질의어 확장과 문서 분류

Query Extending and Document Classification Using Fuzzy Logic

초록

본 연구에서는 인터넷 상의 많은 문서들 중에서 사용자에게 보다 적합한 문서를 제공하기 위해 퍼지 관계성을 이용하여 검색 결과 집합의 문서에서 추출한 키워드간의 유사클래스를 생성한다. 또한, 기존의 키워드 직접 매칭에 의한 검색 방법의 단점이라 할 수 있는 의미적 관계를 가지는 문서에 대한 검색 방법도 제안한다. 생성된 유사 클래스는 사용자의 질의를 확장하여 사용자의 관심도를 보다 많이 반영하게 되고, 그 질의어가 포함된 단어나 구의 발생 빈도수가 높은 문서에 대해 의미적으로 서로 연결시켜 분류한다. 본 연구에서 제안한 알고리즘에 의해 문서를 사용자 관심 정도로 분류, 카테고리를 생성하여 검색 효율을 증대시키고 사용자의 요구에 적합한 결과를 제공하고자 한다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일