$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

효율적 공간 검색을 위한 새로운 색이 키 중복 기법

A New Index Key Duplication method for Efficient Spatial Retrieval

초록

공간 DBMS는 공간 데이터와 비공간 데이터를 서로 다른 물리적인 페이지에 저장한다. 공간 질의의 효율적인 처리를 위해 공간 데이터에 대한 공간 색인을 생성하며, 성능 향상을 위하여 이를 클러스터링 색인으로 사용한다. 그러나, 공간 데이터에 대한 클러스터링 성질이 비공간 데이터 페이지에는 반영되지 않아 공간 데이터와 비공간 데이터는 서로 다른 물리적 순서를 갖는다. 이로 인해 공간 조건(Spatial Predicate)에 의해 선택된 공간 데이터는 물리적 인접성을 가지는 반면, 비공간 데이터는 물리적 인접성을 갖지 않는다. 즉, 공간 질의 처리 과정에서 비공간 데이터 페이지의 잦은 디스크 I/O를 유발한다. 본 논문에서는 효율적 공간 검색을 위한 색인 키 중복 기법을 제안한다. 제안한 기법은 공간 데이터의 색인 기값을 비공간 데이터 내에 중복시키고 공간, 비공간 데이터에 대해 각각의 공간 클러스터링 색인을 생성한다. 두 클러스터링 색인에 의해 공간 데이터와 마찬가지로 비공간 데이터도 공간 조건에 대한 클러스터링 성질을 유지할 수 있다. 질의 처리 과정에서 공간 조건에 의해 선택된 공간 객체들은 공간, 비공간 데이터들 모두 물리적 인접성을 가지게 되며, 비공간 데이터 페이지에 대한 디스크 액세스 횟수를 줄여 공간 검색의 성능을 향상시킬수 있다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일