$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

적응적 웨이블릿 변환을 사용한 영상 코딩 기법에 관한 연구

A Study of Image Coding Technique Using Adaptive Wavelet Transform

초록

본 논문은 이미지 데이터의 효율적인 코딩에 대한 새로운 방법을 나타낸다. 웨이블릿 변환을 기초로 한, 알고리즘은 서브밴드 간의 남아 있는 상관관계를 이용한다. 웨이블릿 계수들에 대한 성공적인 대략값은 계층적인 심볼 스트림을 초래하고, 그것은 PSD(의미있는 자손에 대한 예언)과 함께 매우 높게 압축된다. 코딩 알고리즘은 이미지 컨텐트에 대한 높은 적응성에 의해 그 자체를 구별한다. 초래하는 비트스트림은 그것들의 중요도에 대한 순서에 있어서 모든 이미지 정보를 구성한다. 그러므로 그것은 위험한 디코딩 과정 없이 어떤 지점에서 절단하는 것이 가능하다. 이러한 내장된 비트스트림의 이점은 공간적인 규모성(scalability)과 왜곡율이다. 좀 더 나은 향상은 웨이블릿 패킷으로 알려진 새로운 적응적인 웨이블릿 변환을 사용하여 획득된다. 초기의 기법들과 적합하지 않은 현재의 서브밴드에 대한 관련성있는 통계적인 특성들(특히 상관관계)은 처음으로 분석된다. 그것들에 의존하는, 서브밴드가 분해 유무에 관계없이 분해 결정이 만들어진다. 이러한 결과는 최고의 기본적인 선택이 아니고 최적에 가까운 분해 구조를 초래한다. 본 논문에서 제안한 모델의 가장 주요한 이점은 계산적인 비용의 축소이다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일