$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

얼굴의 움직임을 이용한 응시점 추적

Head Orientation-based Gaze Tracking

초록

본 논문에서 우리는 제약이 없는 배경화면에서 얼굴의 움직임을 이용한 응시점 추적을 위해 얼굴의 특징점(눈, 코, 그리고 입)들을 찾고 head orientation을 구하는 효?거이고 빠른 방법을 제안한다. 얼굴을 찾는 방법이 많이 연구 되어 오고 있으나 많은 부분이 효과적이지 못하거나 제한적인 사항을 필요로 한다. 본 논문에서 제안한 방법은 이진화된 이미지에 기초하고 완전 그래프 매칭을 이용한 유사성을 구하는 방법이다. 즉, 임의의 임계치 값에 의해 이진화된 이미지를 레이블링 한 후 각 쌍의 블록에 대한 유사성을 구한다. 이때 두 눈과 가장 유사성을 갖는 두 블록을 눈으로 선택한다. 눈을 찾은 후 입과 코를 찾아간다. 360$\times$240 이미지의 평균 처리 속도는 0.2초 이내이고 다음 탐색영역을 예상하여 탐색 영역을 줄일 경우 평균 처리속도는 0.15초 이내였다. 그리고 본 논문에서는 얼굴의 움직임을 구하기 위해 각 특징점들이 이루는 각을 기준으로 한 템플릿 매칭을 이용했다. 실험은 다양한 조명환경과 여러 사용자를 대상으로 이루어졌고 속도와 정확성면에서 좋은 결과를 보였다. 도한, 명안정보만을 사용하므로 흑백가메라에서도 사용가능하여 경제적 효과도 기대할 수 있다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일