$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

의존성 구조 학습을 통한 masking 효과 축소

Decreasing the Masking Effect by Learning Dependence Structures

초록

설명 기반 학습은 시스템 성능향상에 필요한 탐색 제어 지식을 학습하는 방법으로 많이 이용되고 있다. EBL은 과거의 문제풀이 과정을 일반화하여 학습한 다음 이와 유사한 상황이 발생할 경우, 문제풀이를 거치지 않고 학습된 해답을 신속하게 제시하여 성능을 향상시킨다. 그러나 새로운 문제 해결이 과거 문제 풀이 해답에 의존할 경우, 그에 대한 해답을 신속히 구할 수는 있지만 해답의 질은 학습 결과에 의존하지 않을 때보다 오히려 못할 수 있다. 이러한 현상을masking효과라고 한다. 본 논문에서는 의존성 구조를 학습, 이용하여 이러한 masking 효과를 축소하고자 한다. 의존성 구조는 현 상태에서 선택된 연산자가 이후의 문제 풀이에 끼치는 영향을 포함하는 구조로서, 이후 유사한 상황에 대해 선택될 연산자의 적합성 및 효율성을 평가하는 기준으로 사용될 수 있다는 점에서 masking 효과를 축소할 수 있다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일