$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

시점 기반 고유공간을 이용한 얼굴 인식

Face Recognition Using View-based EigenSpaces

98 가을 학술발표논문집(Ⅱ) 2000 Apr. , 2000년, pp.458 - 460  
초록

본 논문은 주성분 분석으로 시점 기반 고유얼굴(view-based eigenface)을 생성하고, 그에 기반한 얼굴 인식을 수행하고자 한다. 주성분 분석을 통한 고유얼굴 생성은 얼굴 인식의 어려운 문제 중 하나인 특징 선택과 추출이라는 문제를 해결해 준다. 또한 얼굴 표정이나 방향의 변화에도 인식률이 저하되는 것을 방지할 수 있다. 얼굴 영상을 특징공간(고유공간)으로 변환할 때, 원 얼굴영상의 정보를 최대한으로 나타낼 수 있는 최적의 고유치 개수 선택은 얼굴 데이터베이스의 크기와 인식 속도에 영향을 끼친다. 따라서 본 논문에서는 고유치 개수를 고유치의 누적기여율을 이용해서 구한다. 이는 64$\times$64(=4096)차원의 원 얼굴 영상을 5~7차원으로 표현 가능하게 하였다. 그리고, 각 얼굴 방향에 따라 특징공간을 분리해서 생성함으로써 얼굴 방향의 변화에 따라 오인식률을 줄였다. 축소된 차원과 분리된 특징공간은 메모리 사용과 인식속도의 향상에 기여한다. 본 논문에서 얼굴의 인식은 Mahalanobis distance와 재구성 오차율을 고려해서 이루어졌다. 실험은 개인당 세가지 다른 방향을 가지는 얼굴 영상을 이용하여 이루어졌고, 실험결과, 약 93%의 인식률을 보여주었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일