$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

3차 칼라 오브젝트 관계에 의한 내용 기반 영상 검색

Content-Based Image Retrieval using 3rd Order Color Object Relation

98 가을 학술발표논문집(Ⅱ) 2000 Apr. , 2000년, pp.500 - 502  
초록

최근 정보 사회에서 중요한 기술로 자리잡은 멀티미디어 정보 검색에 대한 다양한연구가 진행 중에 있다. 본 논문은 정지 화상에 대한 CBIR(Content-Based Image Retrieval)방법 중 칼라 정보를 이용한 방법에서 공간 정보를 충분하게 표현할 수 있는 알고리즘을 제안한다. 일반적으로 칼라 정보를 이용한 CBIR에서는 공간정보를 표현하기 위하여 인위적으로 영상을 여러 개로 분할하는 방법이나 영상의 히스토그램 내에서 영상의 위치 정보를 이용하는 방법 등이 연구되었다. 본 논문에서는 기존의 방법을 칼라 오브젝트의 추출 방법에 따라 1차와 2차 관계에 의한 방법으로 분류하고, 이동, 회전 특히 크기 변화(축소, 확대)에 탁월한 성능을 보이는 3차 칼라 오브젝트 관계를 이용한 방법을 소개한다. 제안된 알고리즘은 주어진 영상으로부터 양자화 된 24개의 버킷(bucket)을 생성해서 각 버킷 내의 칼라에 대한 색의 표준 편차로 색의 분산 정도를 나타내고, 빈도수가 높은 3개 버킷의 평균 칼라 위치를 계산해서 그들의 상호 각도를 추출하여 영상의 특징 벡터로 사용하였다. 실험결과 기존 방법보다 특히 영상의 크기 변화에 대해 좋은 결과를 얻을 수 있었으며, 계산량도 적어 효율적임을 보여 주었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일