$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

데이터 마이닝을 위한 대용량 고차원 데이터의 셀-기반 분류방법

Cell-based Classification of High-dimensional Large data for Data Mining Application

초록

최근 데이터 마이닝에서 대용량 데이터를 처리하는 응용이 많아짐에 따라, 클러스터링(Clustering) 및 분류(Classification)방법이 중요한 분야가 되고 있다. 특히 분류방법에 관한 기존 연구들은 단지 메모리 상주(memory-resident) 데이터에 대해 한정되며 고차원 데이터를 효율적으로 처리할 수 없다. 따라서 본 논문에서는 대용량 고차원 데이터를 효과적으로 처리할 수 있는 새로운 분류 알고리즘을 제안한다. 이는 데이터들을 차원 공간상의 셀(cell)로 표현함으로써 수치(numerical) 애트리뷰트와 범주(categorical) 애트리뷰트 모두 처리할 수 있는 알고리즘을 제안한다. 아울러, 실험결과를 통해 제안한 알고리즘이 데이터의 양,차원 그리고 속성에 관계없이 분류를 효과적으로 수행함을 보인다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일