$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

CAM-Brain 모듈결합을 위한 행동선택방법론

Action Selection Mechanism for Combining of CAM-Brain Modules

초록

이동로봇을 위한 제어기를 개발하려는 폭넓은 연구가 진행되어 왔다. 특히, 몇몇 연구가들은 유전자 알고리즘이나 유전자 프로그래밍과 같은 진화 알고리즘을 사용하여 장애물 피하기, 포식자 피하기, 이동하는 먹이 잡기 등의 기능을 수행하는 이동로봇 제어기를 개발하였다. 이러한 연구 선상에서, 우리는 이동로봇을 제어하기 위해 셀룰라 오토마타 상에서 진화된 CAM-Brain을 적용하는 방법을 보여왔다. 그러나, 이러한 접근방법은 로봇이 복잡한 환경에서 적합한 행동을 수행하도록 만드는데 한계가 있었다. 본 논문에서는, Maes의 행동선택 방법론을 이용하여 간단한 행동을 하도록 진화된 모듈들을 결합함으로써 이러한 문제를 해결하려고 한다. 실험 결과는 이러한 접근방법이 복잡한 환경을 위한 신경망 제어기를 개발하는데 가능성이 있음을 보여주었다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일