$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

얼굴 특징정보를 이용한 캐리커처 생성 시스템

Facial Caricaturing System using Facial Features information

초록

캐리커처 생성 시스템은 입력된 인물 사진을 세그먼테이션을 통하여 특징(이목구비)을 추출하고, 추출된 특징정보를 이용하여 그와 유사한 특징정보를 가지는 캐리커처 이미지를 검색하여 매핑시키는 시스템이다. 캐리커처 생성 시스템에서는 얼굴의 대칭 구조를 이용하고 색상과 모양에 대한 정보를 이용하여 얼굴 각각의 특징(이목구비)을 캐리커처의 특징을 구분하는 특징정보로써 활용한다. 본 논문은 인물 사진을 세그멘테이션 처리하여 얻은 부분 영역 특징정보를 이용하여 그와 유사한 캐리커처를 자동으로 생성하는데 목적이 있다. 이 때 사용하는 대칭 구조는 씨앗 픽셀(seed pixel)을 추출한다. 특징정보는 색상의 경우 지역적인 색상정보는 이목구비를 더 뚜렷이 해주고, 전체적인 색상정보는 그 이미지의 피부색의 정보를 나타낸다. 모양의 경우 이목구비의 특징정보를 위해 불변모멘트가 주요하게 사용된다. 또한 데이터베이스는 얼굴의 세부사항(이목구비)에 대한 각각의 캐리커처로 구축되어 있고, 각 세부사항은 특징별 분류되어 있어야 한다. 이런 데이터베이스의 캐리커처와 추출된 얼굴 영상에서의 세부사항을 비교하여 유사도를 계산하고 이를 매핑하므로 개인의 특징을 가진 캐리커처를 자동으로 생성한다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일