$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

3차원 물체의 자세정보 추출을 위한 측면 측정방향군의 범주화

Categorization of Aspect view direction for 3D object′s Pose Estimation

2001 봄 학술발표논문집(B) 2001 Apr. , 2001년, pp.508 - 510  
초록

3차원 물체의 인식과 공간 정보를 추출해 내는 것이 물체인식의 주요 목적이다. 본 논문에서는 평면의 표면을 갖는 기하학적 물체들을 인식하는데 인공신경망이 적용 가능함이 조사되었다. 물체인식을 위한 모델들은 CAD모델들로부터 자동적으로 추출되며, 획득된 물체의 영상과 일치하는 물체의 국면(aspect)과의 매칭은 조건만족 인경신경망을 이용하여 매칭-오차를 최소화시키는 방법을 처리되었다. 인식된 물체의 국면이 어느 방향에서 획득되었는지에 대한 정보(Aspect's view direction)는 검색된 가시 평면들의 분포로부터 추출됨을 ART와 같은 인공신경망을 이용하여 실시간으로 복원할 수 있음을 보였다. 대표적이 측정방향과 이 측정방향으로부터의 편차들을 한 범주에 넣고 학습을 통해 정확한 측정방향 정보들을 구하며, 획득된 3차원 물체의 영상들에 따라 자동적으로 측정방향범주 들이 추가되도록 한다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일