$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

NCEP 일기도 데이터 클러스터링을 위한 특징 벡터 추출

Feature vector extraction for NCEP weather data clustering

2001 봄 학술발표논문집(B) 2001 Apr. , 2001년, pp.583 - 585  
초록

방대한 양의 격자점 데이터 및 일기도 관련 데이터를 효율적으로 저장 및 검색 하기위해서는 데이터들의 유형을 찾아 서로 유형이 비슷한 데이터를 하나의 클러스터로 연관지어 놓으면 효율적인 저장과 검색을 할 수 있다. 클러스터링에서 데이터들의 어떤 특징 벡터를 추출하는가가 클러스터링의 결과에 가장 중요한 영향을 끼친다. 본 논문에서는 격자점, 기압값 데이터로부터 일기도의 특징을 표현할 수 있는 벡터로 변환 한반도도 중심의 8방향에 대한 고/저기압의 분포와 동아시아 지역을 24영역으로 나누어 각 영역별로 고/저기압의 분포 정보를 특징벡터로 추출하여 클러스터링하였다. 클러스터팅 알고리즘으로는 unsupervised mode인 SOM(Self Organizing Map) 기법을 사용하였다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일