$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

일반화된 연관규칙 발견을 위한 Level-based Data Mining 시스템

Level-based Data Mining System for Generalized Association Rules

초록

데이터로부터 숨겨진 패턴을 추출하는 데이터마이닝 기법 중에서 연관규칙은 대용량의 데이터베이스에서 단위 트랜잭션 당 동시에 발생할 확률이 높은 항목들의 유형을 발견하는 기법이다. 연관규칙 탐사에서 개념계층(taxonomy)을 사용하여 보다 포괄적인 의미를 갖는 규칙을 찾아내는 연구가 일반화된 연관규칙이며 이를 통해 일반화 이전에는 간과될 수 있는 중요한 규칙을 발견할 수 있다. 일반화된 연관규칙에 관한 기존의 접근방법은 후보항목집합의 각 항목에 대한 개념계층상의 모든 조상들을 트랜잭션에 추가한 후 확장된 트랜잭션에 대해 지지도를 계산하는 방법이며. 이렇게 되면 연관규칙의 단점중의 하나인 계산량 문제가 더욱 두드러지게 된다. 이에 본 연구에서는 모든 개념계층 레벨이 아닌, 사용자가 관심 있는 레벨로 제한된 환경에서 연관규칙 탐사를 수행하여 규칙생성의 복잡도를 줄이는 시스템을 구현하였다. 그러나 모든 항목을 한 레벨로 일반화하는데는 무리가 따르기 때문에 관심있는 항목의 경우 일반화 레벨을 따로 명시할 수 있도록 하여 사용자가 원하는 규칙을 발견하도록 하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일