$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

협력적 추천을 위한 효율적인 통합 방법

Efficient Combining Methods for a Collaborative Recommendation

초록

신경망을 이용한 추천 기술은 항목이나 사용자간의 가중치를 학습할 수 있고, 자료 유형에 상관없이 데이터 처리가 용이하다. 또한 최근 연구를 통해서 그 우수성이 입증되고 있다. 그러나 사용자간의 상관관계로 추천하는 사용자 신경망 모델과 항목간의 상관관계로 추천하는 항목 신경망 모델이 서로 다른 관점으로 다른 선호도를 제시한 경우에 선택한 모델의 선호도에 따라 시스템의 성능이 좌우된다. 그러므로 효율적이고 성능이 우수한 추천 시스템을 위해 사용자와 항목 신경망 모델의 통합 방법을 제안한다. 두 모델 사이에 우선 순위를 결정하여 통합하는 순차적 통합 방법과 두 모델을 동시에 고려하는 병렬적 통합방법을 제안한다. 그러나 두 통합 방법은 선호도 예측 기준에 있어서 정적이고, 문제에 대한 적응성이 없다. 그러므로 신경망(퍼셉트론, 다층 퍼셉트론)을 이용한 통합 방법을 제안한다. 또한 퍼지의 소속함수를 이용하여 퍼지 추론를 적용한 통합 방법을 제안하고, 패턴 인식 분야에서 사용하는 BKS 방법을 적응하여 두 신경망 모델을 통합하여 실험한다. 본 논문에서는 사용자와 항목 신경망 모델을 통합함으로써 기존의 추천 기술인 연관 규칙과 단일 신경망 모델을 이용한 추천보다 우수함을 보이고 있다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일