$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

지능형 에이전트의 모호한 목적을 처리하기 위한 FuzzyQ-Learning

FuzzyQ-Learning to Process the Vague Goals of Intelligent Agent

초록

일반적으로, 지능형 에이전트는 사용자의 목적과 주위 환경으로부터 최적의 행동을 스스로 찾아낼 수 있어야 한다. 만약 에이전트의 목적이나 주위 환경이 불확실성을 포함하는 경우, 에이전트는 적절한 행동을 선택하기 어렵다. 그러나, 사용자의 목적이 인간 지식의 불확실성을 포함하는 언어값으로 표현되었을 경우, 이를 처리하려는 연구는 없었다. 본 논문에서는 모호한 사용자의 의도를 퍼지 목적으로 나타내고, 에이전트가 인지하는 불확실한 환경을 퍼지 상태로 표현하는 방법을 제안한다. 또, 퍼지 목적과 상태를 이용하여 확장한 펴지 강화 함수와를 이용하여, 기존 강화 학습 알고리즘 중 하나인 Q-Learning을 FuzzyQ-Learning으로 확장하고, 이에 대한 타당성을 검증한다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일