$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

질의확장을 이용한 자동 문서요약

Automatic Text Summarization Using Query Expansion

초록

문서요약이란 문서의 기본적인 내용을 유지하면서 문서의 복잡도를 줄이는 작업이다. 인터넷과 같은 정보기술의 발달로 정보의 양이 급증함에 따라, 정보 과적재(information over load) 문제의 해결을 위해 자동 문서요약시스템의 필요성이 대두되었다. 본 논문에서는 의사 적합성 피드백(pseudo relevance feedback)에 의한 질의확장(query expansion) 기법을 적용한 자동 문서요약 모델을 제안한다. 제안하는 모델의 특징은 질의를 분해함으로써, 적합성 피드백 과정에서 질의가 편향(bias)되어 요약이 잘못되는 문제를 방지할 수 있다는 것이다. 신문기사를 대상으로 평가한 결과 제안한 모델이 질의확장을 적용하지 않은 방법이나 하나의 질의만을 유지하는 일반적인 적합성 피드백 모델보다 더 좋은 성능을 보였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일