$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

질의 결과 크기 추정을 위한 효과적인 공간 분할 기법

Effective Spatial Partitioning Technique for Query Result Size Estimation

초록

공간 데이터베이스의 규모는 매우 방대하여 질의 처리에 많은 비용이 발생한다. 따라서 효율적인 질의 처리를 위해서는 질의 수행 결과의 예측이 필요하다. 이를 위해 실제 공간 데이터의 특성을 근접하게 나타내는 요약 데이터를 생성하여 그 결과를 통해 질의 결과의 크기를 추정하게 된다. 기존의 공간 데이터 요약 기법으로는 면적 균등 분할 기법, 개수 균등 분할 기법, 인덱스 분활 기법 등이 있다. 본 논문에서는 기존에 연구된 다양한 분말 기법에 대해 알아보고, 힐버트 공간 재움 곡선 방법에 개수 균등 분말 기법을 적용시킨 새로운 공간 분할 방법을 제안하여 기존의 방법과 새로운 방법의 성능을 비교한다.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일