$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

동적 시소러스와 GA을 이용한 개별화된 E-Mail1 분류시스템 (PECS

Personalized I-Mail Classification System Using Dynamic Thesaurus and Genetic Algorithm

초록

본 논문에서는 전자메일을 사용자 적합도(선호도)를 기준으로 분류하기 위한 구조를 제안한다. 분류는 1차 분류와 2차 분류로 나눠지는데, 1차 분류에서는 사용자 적합도를 판단하기 위해 사용자 관련 정보로부터 동적 시소러스를 구축하고, 구축된 시소러스와의 비교를 통해 사용자에게 유용한 메일인지 아닌지를 결정하고, 2차 분류에서는 사용자가 지정한 폴더키워드를 중심으로 사용자 시소러스로부터 유전자 알고리즘을 이용해 추출한 키워드들과의 적합도 비교를 통해서 특정 폴더로의 분류가 이뤄지게 된다 테스트에는 메일 정보값(Mail Information Word)을 추출하기 위해 HAM(Hangup Analysys Module)을 포함하는 메일정보추줄 에이전트를 사용하였고, mail의 subject와 본문(body)로부터 추출된 16개의 word정보와 시소러스 적합도 정보, 분류 적합도 정보를 하나의 데이터구조로 사용하였다. 이러한 통할된 시스템 구조와 data structure를 이용해 mail을 사용자의 선호도에 따라. 1차와 2차에 걸친 분류시 분류가 사용자 선호도에 근접하게 이루어 질 수 있음을 확인하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일