$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

용어가중치 결합이 검색 효율성에 미치는 영향 연구

The Impact of Combining Term Wights on Retrieval Effectiveness

초록

본 논문에서는 데이터 결합 영역에서 문서값을 정규화 하는 기법과 결합함수에 따라 용어가중치 결합이 검색성능에 어떤 영향을 미치는가를 분석하였으며, 특히 용어가중치 결합이 실질적으로 효율적인가를 성능 향상률 측면과 검색시스템의 효율성 측면에서 검증하고, 성능이 향상된 용어가중치 결합의 특징을 분석하였다. 실헙결과 대부분의 장어가중치 결합은 문서값 정규화 기법과 실험집단에 관계없이 높은 성능 향상률을 보이지 않았다. 특히 단일가중치고 높은 검색성능을 보였던 상위 가중치 알고리즘들은 다른 가중치 알고리즘과 결합할 경우 두드러진 성능 향상률을 보이지 않았다. 검색시스템의 효율성 측면에서 용어가중치 결합을 평가한 결과 문헌 내 단어빈도를 최대단어 빈도로 정규화한 가중치 알고리즘이 코사인 정규화 기법을 적용한 가중치 알고리즘들과 결합될 때 5개 실험집안에서 최적 단일가중치 보다 2% 이상 높은 성능을 보였다. 이는 서로 다른 특성을 지니는 용어가중치 알고리즘들이 장단점을 보완하여 검색성능을 향상시킨 수 있다는 것을 의미한다. 그러나 용어가중치 결합의 효율성은 컬렉션과 가중치 알고리즘의 특성에 의존적이었으며, 비록 각 용어가중치 결합의 성능이 높게 나타날지라도 최적의 성능을 보인 달일가중치와 비교하면 그 성능 차이가 미미하거나 낮아서 대부분의 용어가중치 결합이 실질적으로 효과적이지 못하였다.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일